{"title":"β-Ga2O3中氧亚晶格的超高稳定性","authors":"Ru He, Junlei Zhao, Jesper Byggmästar, Huan He, Flyura Djurabekova","doi":"10.1103/physrevmaterials.8.084601","DOIUrl":null,"url":null,"abstract":"Recently reported remarkably high radiation tolerance of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>γ</mi><mo>/</mo><mi>β</mi><mtext>−</mtext><msub><mi>Ga</mi><mn>2</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>3</mn></msub></mrow></math> double-polymorphic structure brings this ultrawide-band-gap semiconductor to the frontiers of power electronics applications that are able to operate in challenging environments. Understanding the mechanism of radiation tolerance is crucial for further material modification and tailoring of the desired properties. In this study, we employ machine-learning-enhanced atomistic simulations to assess the stability of both the gallium (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Ga</mi></math>) and oxygen (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">O</mi></math>) sublattices under various levels of damage. Our study uncovers the remarkable resilience and stability of the -sublattice, attributing this property to the strong tendency of recovery of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">O</mi></math> defects, especially within the more strongly disordered regions. Interestingly, we observe the opposite behavior of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Ga</mi></math> defects that display enhanced stability in the same regions of increased disorder. Moreover, we observe that highly defective <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>β</mi><mtext>−</mtext><msub><mi>Ga</mi><mn>2</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>3</mn></msub></mrow></math> is able to transform into <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>γ</mi><mtext>−</mtext><msub><mi>Ga</mi><mn>2</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>3</mn></msub></mrow></math> upon annealing due to preserved lattice organization of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">O</mi></math> sublattice. This result clearly manifests that the ultrahigh stability of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">O</mi></math> sublattice provides the backbone for the exceptional radiation tolerance of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>γ</mi><mo>/</mo><mi>β</mi></mrow></math> double-polymorphic structure. These computational insights closely align with experimental observations, opening avenues for further exploration of polymorphism in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Ga</mi><mn>2</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>3</mn></msub></mrow></math> and potentially in analogous polymorphic families spanning a broad range of diverse materials of complex polymorphic nature.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":"7 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrahigh stability of oxygen sublattice in β−Ga2O3\",\"authors\":\"Ru He, Junlei Zhao, Jesper Byggmästar, Huan He, Flyura Djurabekova\",\"doi\":\"10.1103/physrevmaterials.8.084601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently reported remarkably high radiation tolerance of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>γ</mi><mo>/</mo><mi>β</mi><mtext>−</mtext><msub><mi>Ga</mi><mn>2</mn></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>3</mn></msub></mrow></math> double-polymorphic structure brings this ultrawide-band-gap semiconductor to the frontiers of power electronics applications that are able to operate in challenging environments. Understanding the mechanism of radiation tolerance is crucial for further material modification and tailoring of the desired properties. In this study, we employ machine-learning-enhanced atomistic simulations to assess the stability of both the gallium (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Ga</mi></math>) and oxygen (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">O</mi></math>) sublattices under various levels of damage. Our study uncovers the remarkable resilience and stability of the -sublattice, attributing this property to the strong tendency of recovery of the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">O</mi></math> defects, especially within the more strongly disordered regions. Interestingly, we observe the opposite behavior of the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Ga</mi></math> defects that display enhanced stability in the same regions of increased disorder. Moreover, we observe that highly defective <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>β</mi><mtext>−</mtext><msub><mi>Ga</mi><mn>2</mn></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>3</mn></msub></mrow></math> is able to transform into <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>γ</mi><mtext>−</mtext><msub><mi>Ga</mi><mn>2</mn></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>3</mn></msub></mrow></math> upon annealing due to preserved lattice organization of the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">O</mi></math> sublattice. This result clearly manifests that the ultrahigh stability of the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">O</mi></math> sublattice provides the backbone for the exceptional radiation tolerance of the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>γ</mi><mo>/</mo><mi>β</mi></mrow></math> double-polymorphic structure. These computational insights closely align with experimental observations, opening avenues for further exploration of polymorphism in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>Ga</mi><mn>2</mn></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>3</mn></msub></mrow></math> and potentially in analogous polymorphic families spanning a broad range of diverse materials of complex polymorphic nature.\",\"PeriodicalId\":20545,\"journal\":{\"name\":\"Physical Review Materials\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevmaterials.8.084601\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.084601","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
据最近报道,γ/β-Ga2O3 双多晶结构具有极高的辐射耐受性,这将这种超宽带隙半导体带入了能够在具有挑战性的环境中工作的电力电子应用领域的前沿。了解辐射耐受性的机理对于进一步改性材料和定制所需的性能至关重要。在本研究中,我们采用机器学习增强型原子模拟来评估镓(Ga)和氧(O)子晶格在不同程度的损伤下的稳定性。我们的研究揭示了-亚晶格非凡的恢复力和稳定性,并将这一特性归因于氧缺陷的强烈恢复趋势,尤其是在较强无序区域内。有趣的是,我们观察到 Ga 缺陷的行为恰恰相反,它们在无序度增加的相同区域显示出更强的稳定性。此外,我们还观察到,由于 O 子晶格的晶格组织得以保留,高度缺陷的 β-Ga2O3 能够在退火后转变为 γ-Ga2O3。这一结果清楚地表明,O 亚晶格的超高稳定性为 γ/β 双多晶结构提供了卓越的耐辐射性。这些计算见解与实验观察结果非常吻合,为进一步探索 Ga2O3 的多晶体性质以及潜在的类似多晶体家族开辟了道路,这些家族涵盖了具有复杂多晶体性质的各种材料。
Ultrahigh stability of oxygen sublattice in β−Ga2O3
Recently reported remarkably high radiation tolerance of double-polymorphic structure brings this ultrawide-band-gap semiconductor to the frontiers of power electronics applications that are able to operate in challenging environments. Understanding the mechanism of radiation tolerance is crucial for further material modification and tailoring of the desired properties. In this study, we employ machine-learning-enhanced atomistic simulations to assess the stability of both the gallium () and oxygen () sublattices under various levels of damage. Our study uncovers the remarkable resilience and stability of the -sublattice, attributing this property to the strong tendency of recovery of the defects, especially within the more strongly disordered regions. Interestingly, we observe the opposite behavior of the defects that display enhanced stability in the same regions of increased disorder. Moreover, we observe that highly defective is able to transform into upon annealing due to preserved lattice organization of the sublattice. This result clearly manifests that the ultrahigh stability of the sublattice provides the backbone for the exceptional radiation tolerance of the double-polymorphic structure. These computational insights closely align with experimental observations, opening avenues for further exploration of polymorphism in and potentially in analogous polymorphic families spanning a broad range of diverse materials of complex polymorphic nature.
期刊介绍:
Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.