β-Ga2O3中氧亚晶格的超高稳定性

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Physical Review Materials Pub Date : 2024-08-28 DOI:10.1103/physrevmaterials.8.084601
Ru He, Junlei Zhao, Jesper Byggmästar, Huan He, Flyura Djurabekova
{"title":"β-Ga2O3中氧亚晶格的超高稳定性","authors":"Ru He, Junlei Zhao, Jesper Byggmästar, Huan He, Flyura Djurabekova","doi":"10.1103/physrevmaterials.8.084601","DOIUrl":null,"url":null,"abstract":"Recently reported remarkably high radiation tolerance of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>γ</mi><mo>/</mo><mi>β</mi><mtext>−</mtext><msub><mi>Ga</mi><mn>2</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>3</mn></msub></mrow></math> double-polymorphic structure brings this ultrawide-band-gap semiconductor to the frontiers of power electronics applications that are able to operate in challenging environments. Understanding the mechanism of radiation tolerance is crucial for further material modification and tailoring of the desired properties. In this study, we employ machine-learning-enhanced atomistic simulations to assess the stability of both the gallium (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Ga</mi></math>) and oxygen (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">O</mi></math>) sublattices under various levels of damage. Our study uncovers the remarkable resilience and stability of the -sublattice, attributing this property to the strong tendency of recovery of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">O</mi></math> defects, especially within the more strongly disordered regions. Interestingly, we observe the opposite behavior of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Ga</mi></math> defects that display enhanced stability in the same regions of increased disorder. Moreover, we observe that highly defective <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>β</mi><mtext>−</mtext><msub><mi>Ga</mi><mn>2</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>3</mn></msub></mrow></math> is able to transform into <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>γ</mi><mtext>−</mtext><msub><mi>Ga</mi><mn>2</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>3</mn></msub></mrow></math> upon annealing due to preserved lattice organization of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">O</mi></math> sublattice. This result clearly manifests that the ultrahigh stability of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">O</mi></math> sublattice provides the backbone for the exceptional radiation tolerance of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>γ</mi><mo>/</mo><mi>β</mi></mrow></math> double-polymorphic structure. These computational insights closely align with experimental observations, opening avenues for further exploration of polymorphism in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Ga</mi><mn>2</mn></msub><msub><mi mathvariant=\"normal\">O</mi><mn>3</mn></msub></mrow></math> and potentially in analogous polymorphic families spanning a broad range of diverse materials of complex polymorphic nature.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":"7 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrahigh stability of oxygen sublattice in β−Ga2O3\",\"authors\":\"Ru He, Junlei Zhao, Jesper Byggmästar, Huan He, Flyura Djurabekova\",\"doi\":\"10.1103/physrevmaterials.8.084601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently reported remarkably high radiation tolerance of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>γ</mi><mo>/</mo><mi>β</mi><mtext>−</mtext><msub><mi>Ga</mi><mn>2</mn></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>3</mn></msub></mrow></math> double-polymorphic structure brings this ultrawide-band-gap semiconductor to the frontiers of power electronics applications that are able to operate in challenging environments. Understanding the mechanism of radiation tolerance is crucial for further material modification and tailoring of the desired properties. In this study, we employ machine-learning-enhanced atomistic simulations to assess the stability of both the gallium (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Ga</mi></math>) and oxygen (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">O</mi></math>) sublattices under various levels of damage. Our study uncovers the remarkable resilience and stability of the -sublattice, attributing this property to the strong tendency of recovery of the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">O</mi></math> defects, especially within the more strongly disordered regions. Interestingly, we observe the opposite behavior of the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Ga</mi></math> defects that display enhanced stability in the same regions of increased disorder. Moreover, we observe that highly defective <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>β</mi><mtext>−</mtext><msub><mi>Ga</mi><mn>2</mn></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>3</mn></msub></mrow></math> is able to transform into <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>γ</mi><mtext>−</mtext><msub><mi>Ga</mi><mn>2</mn></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>3</mn></msub></mrow></math> upon annealing due to preserved lattice organization of the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">O</mi></math> sublattice. This result clearly manifests that the ultrahigh stability of the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">O</mi></math> sublattice provides the backbone for the exceptional radiation tolerance of the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>γ</mi><mo>/</mo><mi>β</mi></mrow></math> double-polymorphic structure. These computational insights closely align with experimental observations, opening avenues for further exploration of polymorphism in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>Ga</mi><mn>2</mn></msub><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>3</mn></msub></mrow></math> and potentially in analogous polymorphic families spanning a broad range of diverse materials of complex polymorphic nature.\",\"PeriodicalId\":20545,\"journal\":{\"name\":\"Physical Review Materials\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevmaterials.8.084601\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.084601","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

据最近报道,γ/β-Ga2O3 双多晶结构具有极高的辐射耐受性,这将这种超宽带隙半导体带入了能够在具有挑战性的环境中工作的电力电子应用领域的前沿。了解辐射耐受性的机理对于进一步改性材料和定制所需的性能至关重要。在本研究中,我们采用机器学习增强型原子模拟来评估镓(Ga)和氧(O)子晶格在不同程度的损伤下的稳定性。我们的研究揭示了-亚晶格非凡的恢复力和稳定性,并将这一特性归因于氧缺陷的强烈恢复趋势,尤其是在较强无序区域内。有趣的是,我们观察到 Ga 缺陷的行为恰恰相反,它们在无序度增加的相同区域显示出更强的稳定性。此外,我们还观察到,由于 O 子晶格的晶格组织得以保留,高度缺陷的 β-Ga2O3 能够在退火后转变为 γ-Ga2O3。这一结果清楚地表明,O 亚晶格的超高稳定性为 γ/β 双多晶结构提供了卓越的耐辐射性。这些计算见解与实验观察结果非常吻合,为进一步探索 Ga2O3 的多晶体性质以及潜在的类似多晶体家族开辟了道路,这些家族涵盖了具有复杂多晶体性质的各种材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultrahigh stability of oxygen sublattice in β−Ga2O3
Recently reported remarkably high radiation tolerance of γ/βGa2O3 double-polymorphic structure brings this ultrawide-band-gap semiconductor to the frontiers of power electronics applications that are able to operate in challenging environments. Understanding the mechanism of radiation tolerance is crucial for further material modification and tailoring of the desired properties. In this study, we employ machine-learning-enhanced atomistic simulations to assess the stability of both the gallium (Ga) and oxygen (O) sublattices under various levels of damage. Our study uncovers the remarkable resilience and stability of the -sublattice, attributing this property to the strong tendency of recovery of the O defects, especially within the more strongly disordered regions. Interestingly, we observe the opposite behavior of the Ga defects that display enhanced stability in the same regions of increased disorder. Moreover, we observe that highly defective βGa2O3 is able to transform into γGa2O3 upon annealing due to preserved lattice organization of the O sublattice. This result clearly manifests that the ultrahigh stability of the O sublattice provides the backbone for the exceptional radiation tolerance of the γ/β double-polymorphic structure. These computational insights closely align with experimental observations, opening avenues for further exploration of polymorphism in Ga2O3 and potentially in analogous polymorphic families spanning a broad range of diverse materials of complex polymorphic nature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review Materials
Physical Review Materials Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
5.80
自引率
5.90%
发文量
611
期刊介绍: Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.
期刊最新文献
Impact of grain boundary energy anisotropy on grain growth Magnetization dependent anisotropic topological properties in EuCuP Fluorite-type materials in the monolayer limit Intrinsic origins of broad luminescence in melt-grown ZnGa2O4 single crystals Subjugating extensive magnetostructural temperature window and giant magnetocaloric effect in B-doped (MnNiSi)0.67(Fe2Ge)0.33 hexagonal system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1