{"title":"埃克曼湍流中具有小尺度粗糙度的周期性表面的模拟和缩放分析","authors":"Jonathan Kostelecky, Cedrick Ansorge","doi":"10.1017/jfm.2024.542","DOIUrl":null,"url":null,"abstract":"Roughness of the surface underlying the atmospheric boundary layer causes departures of the near-surface scalar and momentum transport in comparison with aerodynamically smooth surfaces. Here, we investigate the effect of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005421_inline1.png\"/> <jats:tex-math>$56\\times 56$</jats:tex-math> </jats:alternatives> </jats:inline-formula> homogeneously distributed roughness elements on bulk properties of a turbulent Ekman flow. Direct numerical simulation in combination with an immersed boundary method is performed for fully resolved, three-dimensional roughness elements. The packing density is approximately <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005421_inline2.png\"/> <jats:tex-math>$10\\,\\%$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and the roughness elements have a mean height in wall units of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005421_inline3.png\"/> <jats:tex-math>$10 \\lesssim H^+ \\lesssim 40$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. According to their roughness Reynolds numbers, the cases are transitionally rough, although the roughest case is on the verge of being fully rough. We derive the friction of velocity and of the passive scalar through vertical integration of the respective balances. Thereby, we quantify the enhancement of turbulent activity with increasing roughness height and find a scaling for the friction Reynolds number that is verified up to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005421_inline4.png\"/> <jats:tex-math>$Re_\\tau \\approx 2700$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The higher level of turbulent activity results in a deeper logarithmic layer for the rough cases and an increase of the near-surface wind veer in spite of higher <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005421_inline5.png\"/> <jats:tex-math>$Re_\\tau$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We estimate the von Kármán constant for the horizontal velocity <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005421_inline6.png\"/> <jats:tex-math>$\\kappa _{m}=0.42$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (offset <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005421_inline7.png\"/> <jats:tex-math>$A=5.44$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) and for the passive scalar <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005421_inline8.png\"/> <jats:tex-math>$\\kappa _{h}=0.35$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (offset <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005421_inline9.png\"/> <jats:tex-math>$\\mathbb {A}=4.2$</jats:tex-math> </jats:alternatives> </jats:inline-formula>). We find an accurate collapse of the data under the rough-wall scaling in the logarithmic layer, which also yields a scaling for the roughness parameters <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005421_inline10.png\"/> <jats:tex-math>$z$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-nought for momentum (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005421_inline11.png\"/> <jats:tex-math>$z_{0{m}}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) and the passive scalar (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005421_inline12.png\"/> <jats:tex-math>$z_{0{h}}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>).","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"11 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation and scaling analysis of periodic surfaces with small-scale roughness in turbulent Ekman flow\",\"authors\":\"Jonathan Kostelecky, Cedrick Ansorge\",\"doi\":\"10.1017/jfm.2024.542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Roughness of the surface underlying the atmospheric boundary layer causes departures of the near-surface scalar and momentum transport in comparison with aerodynamically smooth surfaces. Here, we investigate the effect of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005421_inline1.png\\\"/> <jats:tex-math>$56\\\\times 56$</jats:tex-math> </jats:alternatives> </jats:inline-formula> homogeneously distributed roughness elements on bulk properties of a turbulent Ekman flow. Direct numerical simulation in combination with an immersed boundary method is performed for fully resolved, three-dimensional roughness elements. The packing density is approximately <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005421_inline2.png\\\"/> <jats:tex-math>$10\\\\,\\\\%$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and the roughness elements have a mean height in wall units of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005421_inline3.png\\\"/> <jats:tex-math>$10 \\\\lesssim H^+ \\\\lesssim 40$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. According to their roughness Reynolds numbers, the cases are transitionally rough, although the roughest case is on the verge of being fully rough. We derive the friction of velocity and of the passive scalar through vertical integration of the respective balances. Thereby, we quantify the enhancement of turbulent activity with increasing roughness height and find a scaling for the friction Reynolds number that is verified up to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005421_inline4.png\\\"/> <jats:tex-math>$Re_\\\\tau \\\\approx 2700$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The higher level of turbulent activity results in a deeper logarithmic layer for the rough cases and an increase of the near-surface wind veer in spite of higher <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005421_inline5.png\\\"/> <jats:tex-math>$Re_\\\\tau$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We estimate the von Kármán constant for the horizontal velocity <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005421_inline6.png\\\"/> <jats:tex-math>$\\\\kappa _{m}=0.42$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (offset <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005421_inline7.png\\\"/> <jats:tex-math>$A=5.44$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) and for the passive scalar <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005421_inline8.png\\\"/> <jats:tex-math>$\\\\kappa _{h}=0.35$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (offset <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005421_inline9.png\\\"/> <jats:tex-math>$\\\\mathbb {A}=4.2$</jats:tex-math> </jats:alternatives> </jats:inline-formula>). We find an accurate collapse of the data under the rough-wall scaling in the logarithmic layer, which also yields a scaling for the roughness parameters <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005421_inline10.png\\\"/> <jats:tex-math>$z$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-nought for momentum (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005421_inline11.png\\\"/> <jats:tex-math>$z_{0{m}}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) and the passive scalar (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005421_inline12.png\\\"/> <jats:tex-math>$z_{0{h}}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>).\",\"PeriodicalId\":15853,\"journal\":{\"name\":\"Journal of Fluid Mechanics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/jfm.2024.542\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.542","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Simulation and scaling analysis of periodic surfaces with small-scale roughness in turbulent Ekman flow
Roughness of the surface underlying the atmospheric boundary layer causes departures of the near-surface scalar and momentum transport in comparison with aerodynamically smooth surfaces. Here, we investigate the effect of $56\times 56$ homogeneously distributed roughness elements on bulk properties of a turbulent Ekman flow. Direct numerical simulation in combination with an immersed boundary method is performed for fully resolved, three-dimensional roughness elements. The packing density is approximately $10\,\%$ and the roughness elements have a mean height in wall units of $10 \lesssim H^+ \lesssim 40$. According to their roughness Reynolds numbers, the cases are transitionally rough, although the roughest case is on the verge of being fully rough. We derive the friction of velocity and of the passive scalar through vertical integration of the respective balances. Thereby, we quantify the enhancement of turbulent activity with increasing roughness height and find a scaling for the friction Reynolds number that is verified up to $Re_\tau \approx 2700$. The higher level of turbulent activity results in a deeper logarithmic layer for the rough cases and an increase of the near-surface wind veer in spite of higher $Re_\tau$. We estimate the von Kármán constant for the horizontal velocity $\kappa _{m}=0.42$ (offset $A=5.44$) and for the passive scalar $\kappa _{h}=0.35$ (offset $\mathbb {A}=4.2$). We find an accurate collapse of the data under the rough-wall scaling in the logarithmic layer, which also yields a scaling for the roughness parameters $z$-nought for momentum ($z_{0{m}}$) and the passive scalar ($z_{0{h}}$).
期刊介绍:
Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.