埃克曼湍流中具有小尺度粗糙度的周期性表面的模拟和缩放分析

IF 3.6 2区 工程技术 Q1 MECHANICS Journal of Fluid Mechanics Pub Date : 2024-08-30 DOI:10.1017/jfm.2024.542
Jonathan Kostelecky, Cedrick Ansorge
{"title":"埃克曼湍流中具有小尺度粗糙度的周期性表面的模拟和缩放分析","authors":"Jonathan Kostelecky, Cedrick Ansorge","doi":"10.1017/jfm.2024.542","DOIUrl":null,"url":null,"abstract":"Roughness of the surface underlying the atmospheric boundary layer causes departures of the near-surface scalar and momentum transport in comparison with aerodynamically smooth surfaces. Here, we investigate the effect of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005421_inline1.png\"/> <jats:tex-math>$56\\times 56$</jats:tex-math> </jats:alternatives> </jats:inline-formula> homogeneously distributed roughness elements on bulk properties of a turbulent Ekman flow. Direct numerical simulation in combination with an immersed boundary method is performed for fully resolved, three-dimensional roughness elements. The packing density is approximately <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005421_inline2.png\"/> <jats:tex-math>$10\\,\\%$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and the roughness elements have a mean height in wall units of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005421_inline3.png\"/> <jats:tex-math>$10 \\lesssim H^+ \\lesssim 40$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. According to their roughness Reynolds numbers, the cases are transitionally rough, although the roughest case is on the verge of being fully rough. We derive the friction of velocity and of the passive scalar through vertical integration of the respective balances. Thereby, we quantify the enhancement of turbulent activity with increasing roughness height and find a scaling for the friction Reynolds number that is verified up to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005421_inline4.png\"/> <jats:tex-math>$Re_\\tau \\approx 2700$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The higher level of turbulent activity results in a deeper logarithmic layer for the rough cases and an increase of the near-surface wind veer in spite of higher <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005421_inline5.png\"/> <jats:tex-math>$Re_\\tau$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We estimate the von Kármán constant for the horizontal velocity <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005421_inline6.png\"/> <jats:tex-math>$\\kappa _{m}=0.42$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (offset <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005421_inline7.png\"/> <jats:tex-math>$A=5.44$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) and for the passive scalar <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005421_inline8.png\"/> <jats:tex-math>$\\kappa _{h}=0.35$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (offset <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005421_inline9.png\"/> <jats:tex-math>$\\mathbb {A}=4.2$</jats:tex-math> </jats:alternatives> </jats:inline-formula>). We find an accurate collapse of the data under the rough-wall scaling in the logarithmic layer, which also yields a scaling for the roughness parameters <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005421_inline10.png\"/> <jats:tex-math>$z$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-nought for momentum (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005421_inline11.png\"/> <jats:tex-math>$z_{0{m}}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) and the passive scalar (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005421_inline12.png\"/> <jats:tex-math>$z_{0{h}}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>).","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"11 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation and scaling analysis of periodic surfaces with small-scale roughness in turbulent Ekman flow\",\"authors\":\"Jonathan Kostelecky, Cedrick Ansorge\",\"doi\":\"10.1017/jfm.2024.542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Roughness of the surface underlying the atmospheric boundary layer causes departures of the near-surface scalar and momentum transport in comparison with aerodynamically smooth surfaces. Here, we investigate the effect of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005421_inline1.png\\\"/> <jats:tex-math>$56\\\\times 56$</jats:tex-math> </jats:alternatives> </jats:inline-formula> homogeneously distributed roughness elements on bulk properties of a turbulent Ekman flow. Direct numerical simulation in combination with an immersed boundary method is performed for fully resolved, three-dimensional roughness elements. The packing density is approximately <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005421_inline2.png\\\"/> <jats:tex-math>$10\\\\,\\\\%$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and the roughness elements have a mean height in wall units of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005421_inline3.png\\\"/> <jats:tex-math>$10 \\\\lesssim H^+ \\\\lesssim 40$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. According to their roughness Reynolds numbers, the cases are transitionally rough, although the roughest case is on the verge of being fully rough. We derive the friction of velocity and of the passive scalar through vertical integration of the respective balances. Thereby, we quantify the enhancement of turbulent activity with increasing roughness height and find a scaling for the friction Reynolds number that is verified up to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005421_inline4.png\\\"/> <jats:tex-math>$Re_\\\\tau \\\\approx 2700$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The higher level of turbulent activity results in a deeper logarithmic layer for the rough cases and an increase of the near-surface wind veer in spite of higher <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005421_inline5.png\\\"/> <jats:tex-math>$Re_\\\\tau$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We estimate the von Kármán constant for the horizontal velocity <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005421_inline6.png\\\"/> <jats:tex-math>$\\\\kappa _{m}=0.42$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (offset <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005421_inline7.png\\\"/> <jats:tex-math>$A=5.44$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) and for the passive scalar <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005421_inline8.png\\\"/> <jats:tex-math>$\\\\kappa _{h}=0.35$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (offset <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005421_inline9.png\\\"/> <jats:tex-math>$\\\\mathbb {A}=4.2$</jats:tex-math> </jats:alternatives> </jats:inline-formula>). We find an accurate collapse of the data under the rough-wall scaling in the logarithmic layer, which also yields a scaling for the roughness parameters <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005421_inline10.png\\\"/> <jats:tex-math>$z$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-nought for momentum (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005421_inline11.png\\\"/> <jats:tex-math>$z_{0{m}}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) and the passive scalar (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005421_inline12.png\\\"/> <jats:tex-math>$z_{0{h}}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>).\",\"PeriodicalId\":15853,\"journal\":{\"name\":\"Journal of Fluid Mechanics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/jfm.2024.542\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.542","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

与空气动力学光滑表面相比,大气边界层下表面的粗糙度会导致近表面标量和动量传输的偏离。在这里,我们研究了 56 次 56 元均匀分布的粗糙度元素对湍流埃克曼流体质的影响。结合沉浸边界法对完全解析的三维粗糙度元素进行了直接数值模拟。堆积密度约为 $10\,\%$,粗糙度元素以壁为单位的平均高度为 $10 \lesssim H^+ \lesssim 40$。根据其粗糙度雷诺数,这些情况都是过渡粗糙,尽管最粗糙的情况濒临完全粗糙。我们通过对各自的平衡进行垂直积分,得出了速度和被动标量的摩擦力。因此,我们量化了湍流活动随粗糙度高度增加而增强的情况,并找到了摩擦雷诺数的缩放比例,该比例最高可达 $Re_\tau \approx 2700$。更高水平的湍流活动导致粗糙度情况下的对数层更深,并且尽管Re_\tau$更高,近表面风偏也会增加。我们估算了水平速度 $\kappa _{m}=0.42$ (偏移 $A=5.44$)和被动标量 $\kappa _{h}=0.35$ (偏移 $\mathbb {A}=4.2$ )的冯卡尔曼常数。我们发现在对数层的粗糙壁缩放下,数据会发生精确的坍缩,这也产生了动量($z_{0{m}}$)和被动标量($z_{0{h}}$)的粗糙度参数$z$-无缩放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulation and scaling analysis of periodic surfaces with small-scale roughness in turbulent Ekman flow
Roughness of the surface underlying the atmospheric boundary layer causes departures of the near-surface scalar and momentum transport in comparison with aerodynamically smooth surfaces. Here, we investigate the effect of $56\times 56$ homogeneously distributed roughness elements on bulk properties of a turbulent Ekman flow. Direct numerical simulation in combination with an immersed boundary method is performed for fully resolved, three-dimensional roughness elements. The packing density is approximately $10\,\%$ and the roughness elements have a mean height in wall units of $10 \lesssim H^+ \lesssim 40$ . According to their roughness Reynolds numbers, the cases are transitionally rough, although the roughest case is on the verge of being fully rough. We derive the friction of velocity and of the passive scalar through vertical integration of the respective balances. Thereby, we quantify the enhancement of turbulent activity with increasing roughness height and find a scaling for the friction Reynolds number that is verified up to $Re_\tau \approx 2700$ . The higher level of turbulent activity results in a deeper logarithmic layer for the rough cases and an increase of the near-surface wind veer in spite of higher $Re_\tau$ . We estimate the von Kármán constant for the horizontal velocity $\kappa _{m}=0.42$ (offset $A=5.44$ ) and for the passive scalar $\kappa _{h}=0.35$ (offset $\mathbb {A}=4.2$ ). We find an accurate collapse of the data under the rough-wall scaling in the logarithmic layer, which also yields a scaling for the roughness parameters $z$ -nought for momentum ( $z_{0{m}}$ ) and the passive scalar ( $z_{0{h}}$ ).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
27.00%
发文量
945
审稿时长
5.1 months
期刊介绍: Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.
期刊最新文献
Flagellum Pumping Efficiency in Shear-Thinning Viscoelastic Fluids. Particle chirality does not matter in the large-scale features of strong turbulence. Parametric oscillations of the sessile drop Detachment of leading-edge vortex enhances wake capture force production Self-similarity and the direct (enstrophy) cascade in forced two-dimensional fluid turbulence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1