用于片上神经元的数据处理和存储的嵌入式生物计算序列电路

Giulio Basso, Reinhold Scherer, Michael Taynnan Barros
{"title":"用于片上神经元的数据处理和存储的嵌入式生物计算序列电路","authors":"Giulio Basso, Reinhold Scherer, Michael Taynnan Barros","doi":"arxiv-2408.07628","DOIUrl":null,"url":null,"abstract":"With conventional silicon-based computing approaching its physical and\nefficiency limits, biocomputing emerges as a promising alternative. This\napproach utilises biomaterials such as DNA and neurons as an interesting\nalternative to data processing and storage. This study explores the potential\nof neuronal biocomputing to rival silicon-based systems. We explore neuronal\nlogic gates and sequential circuits that mimic conventional computer\narchitectures. Through mathematical modelling, optimisation, and computer\nsimulation, we demonstrate the operational capabilities of neuronal sequential\ncircuits. These circuits include a neuronal NAND gate, SR Latch flip-flop, and\nD flip-flop memory units. Our approach involves manipulating neuron\ncommunication, synaptic conductance, spike buffers, neuron types, and specific\nneuronal network topology designs. The experiments demonstrate the practicality\nof encoding binary information using patterns of neuronal activity and\novercoming synchronization difficulties with neuronal buffers and inhibition\nstrategies. Our results confirm the effectiveness and scalability of neuronal\nlogic circuits, showing that they maintain a stable metabolic burden even in\ncomplex data storage configurations. Our study not only demonstrates the\nconcept of embodied biocomputing by manipulating neuronal properties for\ndigital signal processing but also establishes the foundation for cutting-edge\nbiocomputing technologies. Our designs open up possibilities for using neurons\nas energy-efficient computing solutions. These solutions have the potential to\nbecome an alternate to silicon-based systems by providing a carbon-neutral,\nbiologically feasible alternative.","PeriodicalId":501517,"journal":{"name":"arXiv - QuanBio - Neurons and Cognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embodied Biocomputing Sequential Circuits with Data Processing and Storage for Neurons-on-a-chip\",\"authors\":\"Giulio Basso, Reinhold Scherer, Michael Taynnan Barros\",\"doi\":\"arxiv-2408.07628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With conventional silicon-based computing approaching its physical and\\nefficiency limits, biocomputing emerges as a promising alternative. This\\napproach utilises biomaterials such as DNA and neurons as an interesting\\nalternative to data processing and storage. This study explores the potential\\nof neuronal biocomputing to rival silicon-based systems. We explore neuronal\\nlogic gates and sequential circuits that mimic conventional computer\\narchitectures. Through mathematical modelling, optimisation, and computer\\nsimulation, we demonstrate the operational capabilities of neuronal sequential\\ncircuits. These circuits include a neuronal NAND gate, SR Latch flip-flop, and\\nD flip-flop memory units. Our approach involves manipulating neuron\\ncommunication, synaptic conductance, spike buffers, neuron types, and specific\\nneuronal network topology designs. The experiments demonstrate the practicality\\nof encoding binary information using patterns of neuronal activity and\\novercoming synchronization difficulties with neuronal buffers and inhibition\\nstrategies. Our results confirm the effectiveness and scalability of neuronal\\nlogic circuits, showing that they maintain a stable metabolic burden even in\\ncomplex data storage configurations. Our study not only demonstrates the\\nconcept of embodied biocomputing by manipulating neuronal properties for\\ndigital signal processing but also establishes the foundation for cutting-edge\\nbiocomputing technologies. Our designs open up possibilities for using neurons\\nas energy-efficient computing solutions. These solutions have the potential to\\nbecome an alternate to silicon-based systems by providing a carbon-neutral,\\nbiologically feasible alternative.\",\"PeriodicalId\":501517,\"journal\":{\"name\":\"arXiv - QuanBio - Neurons and Cognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Neurons and Cognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.07628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着传统的硅基计算在物理和效率方面逐渐接近极限,生物计算成为一种前景广阔的替代方案。这种方法利用 DNA 和神经元等生物材料作为数据处理和存储的有趣替代方案。本研究探讨了神经元生物计算与硅基系统相媲美的潜力。我们探索了模仿传统计算机体系结构的神经元逻辑门和顺序电路。通过数学建模、优化和计算机模拟,我们展示了神经元序列电路的运行能力。这些电路包括神经元 NAND 门、SR Latch 触发器和 D 触发器存储单元。我们的方法包括操纵神经元通信、突触传导、尖峰缓冲器、神经元类型和特定的神经元网络拓扑设计。实验证明了利用神经元活动模式编码二进制信息以及利用神经元缓冲器和抑制策略克服同步困难的实用性。我们的研究结果证实了神经元逻辑电路的有效性和可扩展性,表明即使是不复杂的数据存储配置,它们也能保持稳定的代谢负担。我们的研究不仅证明了通过操纵神经元特性进行数字信号处理的嵌入式生物计算概念,还为尖端生物计算技术奠定了基础。我们的设计为使用神经元作为高能效计算解决方案提供了可能性。通过提供碳中和、生物可行的替代方案,这些解决方案有可能成为硅基系统的替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Embodied Biocomputing Sequential Circuits with Data Processing and Storage for Neurons-on-a-chip
With conventional silicon-based computing approaching its physical and efficiency limits, biocomputing emerges as a promising alternative. This approach utilises biomaterials such as DNA and neurons as an interesting alternative to data processing and storage. This study explores the potential of neuronal biocomputing to rival silicon-based systems. We explore neuronal logic gates and sequential circuits that mimic conventional computer architectures. Through mathematical modelling, optimisation, and computer simulation, we demonstrate the operational capabilities of neuronal sequential circuits. These circuits include a neuronal NAND gate, SR Latch flip-flop, and D flip-flop memory units. Our approach involves manipulating neuron communication, synaptic conductance, spike buffers, neuron types, and specific neuronal network topology designs. The experiments demonstrate the practicality of encoding binary information using patterns of neuronal activity and overcoming synchronization difficulties with neuronal buffers and inhibition strategies. Our results confirm the effectiveness and scalability of neuronal logic circuits, showing that they maintain a stable metabolic burden even in complex data storage configurations. Our study not only demonstrates the concept of embodied biocomputing by manipulating neuronal properties for digital signal processing but also establishes the foundation for cutting-edge biocomputing technologies. Our designs open up possibilities for using neurons as energy-efficient computing solutions. These solutions have the potential to become an alternate to silicon-based systems by providing a carbon-neutral, biologically feasible alternative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Early reduced dopaminergic tone mediated by D3 receptor and dopamine transporter in absence epileptogenesis Contrasformer: A Brain Network Contrastive Transformer for Neurodegenerative Condition Identification Identifying Influential nodes in Brain Networks via Self-Supervised Graph-Transformer Contrastive Learning in Memristor-based Neuromorphic Systems Self-Attention Limits Working Memory Capacity of Transformer-Based Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1