不同冷却速率下镍基超合金的凝固行为

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Research Pub Date : 2024-09-05 DOI:10.1557/s43578-024-01429-y
Shuai He, Zhifeng Li, Chi Zhang, Xin Liu, Chaoyi Wang, Junsheng Wang
{"title":"不同冷却速率下镍基超合金的凝固行为","authors":"Shuai He, Zhifeng Li, Chi Zhang, Xin Liu, Chaoyi Wang, Junsheng Wang","doi":"10.1557/s43578-024-01429-y","DOIUrl":null,"url":null,"abstract":"<p>The solidification behavior of Ni-based superalloy in the cooling rates range of 0.5–10 °C/s was investigated for simulation the casting process. Scheil model was used to calculate the solidification path of Ni-based superalloy. The results show that the precipitation sequence of solid phases from the liquid phase was as follows: Liquid (<i>L</i>) → <i>L</i> + <i>γ</i> → <i>L</i> + <i>γ</i> + MC → <i>γ</i> + MC + <i>γ</i>/<i>γ</i>′ eutectic. The precipitation temperature of <i>γ</i>/<i>γ</i>′ eutectic was increased with the increase of cooling rate. The solidification structures of Ni-based superalloy were found to be mainly dendritic, and the distance between dendrites decreased with the increase of cooling rate. The MC carbides enriched with C, Ti, Hf, Ta, and other elements presented rectangles, which contributed to refine the solidification structure as the heterogeneous nucleus. The nano-indentation was used to measure the <i>γ</i> + <i>γ</i>′ matrix and MC cabides, and the mechanism of cooling rate on the evolution of microstructure during the solidification was discussed.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3><p>The solidification structures of Ni-based superalloy.</p>","PeriodicalId":16306,"journal":{"name":"Journal of Materials Research","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solidification behavior of Ni-based superalloy at different cooling rates\",\"authors\":\"Shuai He, Zhifeng Li, Chi Zhang, Xin Liu, Chaoyi Wang, Junsheng Wang\",\"doi\":\"10.1557/s43578-024-01429-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The solidification behavior of Ni-based superalloy in the cooling rates range of 0.5–10 °C/s was investigated for simulation the casting process. Scheil model was used to calculate the solidification path of Ni-based superalloy. The results show that the precipitation sequence of solid phases from the liquid phase was as follows: Liquid (<i>L</i>) → <i>L</i> + <i>γ</i> → <i>L</i> + <i>γ</i> + MC → <i>γ</i> + MC + <i>γ</i>/<i>γ</i>′ eutectic. The precipitation temperature of <i>γ</i>/<i>γ</i>′ eutectic was increased with the increase of cooling rate. The solidification structures of Ni-based superalloy were found to be mainly dendritic, and the distance between dendrites decreased with the increase of cooling rate. The MC carbides enriched with C, Ti, Hf, Ta, and other elements presented rectangles, which contributed to refine the solidification structure as the heterogeneous nucleus. The nano-indentation was used to measure the <i>γ</i> + <i>γ</i>′ matrix and MC cabides, and the mechanism of cooling rate on the evolution of microstructure during the solidification was discussed.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3><p>The solidification structures of Ni-based superalloy.</p>\",\"PeriodicalId\":16306,\"journal\":{\"name\":\"Journal of Materials Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43578-024-01429-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-024-01429-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了镍基超耐热合金在 0.5-10 °C/s 冷却速率范围内的凝固行为,以模拟铸造过程。采用 Scheil 模型计算了镍基超耐热合金的凝固路径。结果表明,固相从液相析出的顺序如下:液相 (L) → L + γ → L + γ + MC → γ + MC + γ/γ′ 共晶。γ/γ′共晶的析出温度随冷却速率的增加而升高。镍基超耐热合金的凝固结构以树枝状为主,且树枝间距随冷却速率的增加而减小。富含 C、Ti、Hf、Ta 等元素的 MC 碳化物呈矩形,作为异质晶核有助于细化凝固结构。采用纳米压痕法测量了γ+γ′基体和MC碳化物,并讨论了冷却速度对凝固过程中微观结构演变的影响机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solidification behavior of Ni-based superalloy at different cooling rates

The solidification behavior of Ni-based superalloy in the cooling rates range of 0.5–10 °C/s was investigated for simulation the casting process. Scheil model was used to calculate the solidification path of Ni-based superalloy. The results show that the precipitation sequence of solid phases from the liquid phase was as follows: Liquid (L) → L + γ → L + γ + MC → γ + MC + γ/γ′ eutectic. The precipitation temperature of γ/γ′ eutectic was increased with the increase of cooling rate. The solidification structures of Ni-based superalloy were found to be mainly dendritic, and the distance between dendrites decreased with the increase of cooling rate. The MC carbides enriched with C, Ti, Hf, Ta, and other elements presented rectangles, which contributed to refine the solidification structure as the heterogeneous nucleus. The nano-indentation was used to measure the γ + γ′ matrix and MC cabides, and the mechanism of cooling rate on the evolution of microstructure during the solidification was discussed.

Graphical Abstract

The solidification structures of Ni-based superalloy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Research
Journal of Materials Research 工程技术-材料科学:综合
CiteScore
4.50
自引率
3.70%
发文量
362
审稿时长
2.8 months
期刊介绍: Journal of Materials Research (JMR) publishes the latest advances about the creation of new materials and materials with novel functionalities, fundamental understanding of processes that control the response of materials, and development of materials with significant performance improvements relative to state of the art materials. JMR welcomes papers that highlight novel processing techniques, the application and development of new analytical tools, and interpretation of fundamental materials science to achieve enhanced materials properties and uses. Materials research papers in the following topical areas are welcome. • Novel materials discovery • Electronic, photonic and magnetic materials • Energy Conversion and storage materials • New thermal and structural materials • Soft materials • Biomaterials and related topics • Nanoscale science and technology • Advances in materials characterization methods and techniques • Computational materials science, modeling and theory
期刊最新文献
Effect of Co concentration on cation distribution and magnetic and magneto-optical properties of CoxZn1-xFe2O4 nanoparticles synthesized with citrate precursor method Fabrication and characterization of nanocomposite hydrogel based N-succinyl chitosan/oxidized tragacanth gum/silver nanoparticles for biomedical materials Development of a processing route for the fabrication of thin hierarchically porous copper self-standing structure using direct ink writing and sintering for electrochemical energy storage application Rapidly synthesis of AuM (M = Pt, Pd) hexagonals/graphene quantum dots nanostructures and their application for non-enzyme hydrogen peroxide detection Nanocomposites Fe2O3/PNR loaded partially reduced rGO/GCE as an electrochemical probe for selective determination of uric acid and dopamine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1