CSH-PCE 纳米复合材料对含硅酸盐水泥、石灰石和煅烧煤矸石的三元粘结剂早期水化的影响

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Journal of Thermal Analysis and Calorimetry Pub Date : 2024-09-03 DOI:10.1007/s10973-024-13501-0
Ying Liu, Qinghui Yang, Yuantao Wang, Shufeng Liu, Yuanyuan Huang, Delu Zou, Xueyan Fan, Haoran Zhai, Yongling Ding
{"title":"CSH-PCE 纳米复合材料对含硅酸盐水泥、石灰石和煅烧煤矸石的三元粘结剂早期水化的影响","authors":"Ying Liu, Qinghui Yang, Yuantao Wang, Shufeng Liu, Yuanyuan Huang, Delu Zou, Xueyan Fan, Haoran Zhai, Yongling Ding","doi":"10.1007/s10973-024-13501-0","DOIUrl":null,"url":null,"abstract":"<p>In this work, the impact of lab synthetic addition agent, CSH-PCE nanocomposites (CPNs), on the early hydration property of the ternary binder containing Portland cement, limestone, and calcined coal gangue was investigated. CPNs were added in partial substitution of Portland cement by mass at 0%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5% and 3.0%. X-ray diffraction (XRD), isothermal calorimetry, mercury intrusion porosimetry, and scanning electron microscopy were used to characterize the hydration and hydrates of the CPNs-modified pastes systematically. The workability and compressive strength of this ternary system was also studied. The obtained results indicated that the use of CPNs continuously improved the workability of the ternary mortar. The compressive strength of the ternary mortar increased with CPNs additions until the threshold limits of 3.0% and 2.5% before and after 12 h, under which the strength values were even higher than the reference OPC mortar at each age. Isothermal calorimetry results indicated that CPNs promoted cement hydration and produced more hydrates, which were also verified by the qualitative XRD analysis. This promotion effect leads to significant reduction in porosity as well as densification in microstructure within the ternary paste, ultimately resulting in enhanced early-age compressive strength. These findings provide valuable insights for designing lower carbon footprint ternary blends incorporating calcined coal gangue and limestone while maintaining comparable early-age compressive strength to traditional cement.</p>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"1 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of CSH-PCE nanocomposites on early hydration of the ternary binder containing Portland cement, limestone, and calcined coal gangue\",\"authors\":\"Ying Liu, Qinghui Yang, Yuantao Wang, Shufeng Liu, Yuanyuan Huang, Delu Zou, Xueyan Fan, Haoran Zhai, Yongling Ding\",\"doi\":\"10.1007/s10973-024-13501-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, the impact of lab synthetic addition agent, CSH-PCE nanocomposites (CPNs), on the early hydration property of the ternary binder containing Portland cement, limestone, and calcined coal gangue was investigated. CPNs were added in partial substitution of Portland cement by mass at 0%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5% and 3.0%. X-ray diffraction (XRD), isothermal calorimetry, mercury intrusion porosimetry, and scanning electron microscopy were used to characterize the hydration and hydrates of the CPNs-modified pastes systematically. The workability and compressive strength of this ternary system was also studied. The obtained results indicated that the use of CPNs continuously improved the workability of the ternary mortar. The compressive strength of the ternary mortar increased with CPNs additions until the threshold limits of 3.0% and 2.5% before and after 12 h, under which the strength values were even higher than the reference OPC mortar at each age. Isothermal calorimetry results indicated that CPNs promoted cement hydration and produced more hydrates, which were also verified by the qualitative XRD analysis. This promotion effect leads to significant reduction in porosity as well as densification in microstructure within the ternary paste, ultimately resulting in enhanced early-age compressive strength. These findings provide valuable insights for designing lower carbon footprint ternary blends incorporating calcined coal gangue and limestone while maintaining comparable early-age compressive strength to traditional cement.</p>\",\"PeriodicalId\":678,\"journal\":{\"name\":\"Journal of Thermal Analysis and Calorimetry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Analysis and Calorimetry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10973-024-13501-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10973-024-13501-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,研究了实验室合成添加剂 CSH-PCE 纳米复合材料(CPNs)对含硅酸盐水泥、石灰石和煅烧煤矸石的三元粘结剂早期水化性能的影响。CPN 的添加量为 0%、0.5%、1.0%、1.5%、2.0%、2.5% 和 3.0%,部分替代硅酸盐水泥。采用 X 射线衍射 (XRD)、等温量热法、水银渗入式孔隙测定法和扫描电子显微镜对 CPNs 改性浆料的水化和水合物进行了系统表征。此外,还研究了该三元体系的可操作性和抗压强度。结果表明,氯化萘的使用持续改善了三元砂浆的工作性。三元砂浆的抗压强度随着氯化石蜡萘添加量的增加而增加,直到 12 小时前后达到 3.0% 和 2.5% 的临界值,在此临界值下,各龄期的强度值甚至高于参考 OPC 砂浆。等温量热仪结果表明,氯化萘促进了水泥水化,产生了更多的水合物,这一点也在定性 XRD 分析中得到了验证。这种促进作用显著降低了孔隙率,并使三元浆料的微观结构致密化,最终提高了早期龄期抗压强度。这些发现为设计掺入煅烧煤矸石和石灰石的低碳足迹三元混合物,同时保持与传统水泥相当的龄期抗压强度提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of CSH-PCE nanocomposites on early hydration of the ternary binder containing Portland cement, limestone, and calcined coal gangue

In this work, the impact of lab synthetic addition agent, CSH-PCE nanocomposites (CPNs), on the early hydration property of the ternary binder containing Portland cement, limestone, and calcined coal gangue was investigated. CPNs were added in partial substitution of Portland cement by mass at 0%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5% and 3.0%. X-ray diffraction (XRD), isothermal calorimetry, mercury intrusion porosimetry, and scanning electron microscopy were used to characterize the hydration and hydrates of the CPNs-modified pastes systematically. The workability and compressive strength of this ternary system was also studied. The obtained results indicated that the use of CPNs continuously improved the workability of the ternary mortar. The compressive strength of the ternary mortar increased with CPNs additions until the threshold limits of 3.0% and 2.5% before and after 12 h, under which the strength values were even higher than the reference OPC mortar at each age. Isothermal calorimetry results indicated that CPNs promoted cement hydration and produced more hydrates, which were also verified by the qualitative XRD analysis. This promotion effect leads to significant reduction in porosity as well as densification in microstructure within the ternary paste, ultimately resulting in enhanced early-age compressive strength. These findings provide valuable insights for designing lower carbon footprint ternary blends incorporating calcined coal gangue and limestone while maintaining comparable early-age compressive strength to traditional cement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
9.10%
发文量
577
审稿时长
3.8 months
期刊介绍: Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews. The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.
期刊最新文献
Thermal characterization of plat heat exchanger made from polymer biocomposite reinforced by silicon carbide Recent advances in thermal analysis and calorimetry presented at the 3rd Journal of Thermal Analysis and Calorimetry Conference and 9th V4 (Joint Czech–Hungarian–Polish–Slovakian) Thermoanalytical Conference (2023) Spalling behavior of high-strength polypropylene fiber-reinforced concrete subjected to elevated temperature Review about the history of thermal analysis in Hungary Study of thermal behavior and crystallization kinetics of glass microspheres in the Y3Al5O12-Al2O3 system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1