调节钠金属负极表面改性碳纳米球层的化学性质以实现高负荷电池

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Research Pub Date : 2024-09-03 DOI:10.1007/s12274-024-6935-4
Chuang Li, Xueying Zheng, Minghao Sun, Fei Tian, Danni Lei, Chengxin Wang
{"title":"调节钠金属负极表面改性碳纳米球层的化学性质以实现高负荷电池","authors":"Chuang Li,&nbsp;Xueying Zheng,&nbsp;Minghao Sun,&nbsp;Fei Tian,&nbsp;Danni Lei,&nbsp;Chengxin Wang","doi":"10.1007/s12274-024-6935-4","DOIUrl":null,"url":null,"abstract":"<div><p>The energy density of batteries can be increased by using high-load cathode material matched with sodium (Na) metal anode. However, the large polarization of the battery under such harsh conditions will promote the growth of Na dendrites and side reactions. Carbon materials are regarded as ideal modify layers on Na metal anode to regulate the Na<sup>+</sup> plating/stripping behavior and inhibit the Na dendrites and side reactions due to their light weight, high stability and structural adjustability. However, commonly used carbon nanotubes and carbon nanofibers cannot enable these modified Na metal anodes to operate stably in full batteries with a high-load cathode (&gt; 15 mg·cm<sup>−2</sup>). The most fundamental reason is that abundant polar functional groups on the surface bring serious side reactions and agglomerations lead to uneven Na<sup>+</sup> flow. Here, a proof-of-concept study lies on fabrications of carbon nanospheres with small amount of polar functional groups and sodiophobic components on the surface of Na metal anode, which significantly enhances the uniformity of the Na<sup>+</sup> plating/stripping. The assembled symmetric battery can cycle stability for 1300 h at 3 mA·cm<sup>−2</sup>/3 mAh·cm<sup>−2</sup>. The full battery with high-load Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (30 mg·cm<sup>−2</sup>) maintains a Coulombic efficiency of 99.7% after 100 cycles.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 11","pages":"9728 - 9736"},"PeriodicalIF":9.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulate the chemical property of the carbon nanospheres layer modified on the surface of sodium metal anode to achieve high-load battery\",\"authors\":\"Chuang Li,&nbsp;Xueying Zheng,&nbsp;Minghao Sun,&nbsp;Fei Tian,&nbsp;Danni Lei,&nbsp;Chengxin Wang\",\"doi\":\"10.1007/s12274-024-6935-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The energy density of batteries can be increased by using high-load cathode material matched with sodium (Na) metal anode. However, the large polarization of the battery under such harsh conditions will promote the growth of Na dendrites and side reactions. Carbon materials are regarded as ideal modify layers on Na metal anode to regulate the Na<sup>+</sup> plating/stripping behavior and inhibit the Na dendrites and side reactions due to their light weight, high stability and structural adjustability. However, commonly used carbon nanotubes and carbon nanofibers cannot enable these modified Na metal anodes to operate stably in full batteries with a high-load cathode (&gt; 15 mg·cm<sup>−2</sup>). The most fundamental reason is that abundant polar functional groups on the surface bring serious side reactions and agglomerations lead to uneven Na<sup>+</sup> flow. Here, a proof-of-concept study lies on fabrications of carbon nanospheres with small amount of polar functional groups and sodiophobic components on the surface of Na metal anode, which significantly enhances the uniformity of the Na<sup>+</sup> plating/stripping. The assembled symmetric battery can cycle stability for 1300 h at 3 mA·cm<sup>−2</sup>/3 mAh·cm<sup>−2</sup>. The full battery with high-load Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (30 mg·cm<sup>−2</sup>) maintains a Coulombic efficiency of 99.7% after 100 cycles.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":713,\"journal\":{\"name\":\"Nano Research\",\"volume\":\"17 11\",\"pages\":\"9728 - 9736\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12274-024-6935-4\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12274-024-6935-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

使用与钠(Na)金属阳极相匹配的高负载阴极材料可以提高电池的能量密度。然而,在如此苛刻的条件下,电池的极化程度过高会促进 Na 树枝状化合物的生长和副反应。碳材料因其重量轻、稳定性高、结构可调节性强等特点,被认为是钠金属阳极上理想的修饰层,可调节 Na+ 的板结/剥离行为,抑制 Na 树枝状突起和副反应。然而,常用的碳纳米管和碳纳米纤维并不能使这些改性的 Na 金属阳极在高负荷阴极(> 15 mg-cm-2)的完整电池中稳定运行。最根本的原因是表面丰富的极性官能团会带来严重的副反应,团聚会导致 Na+ 流动不均匀。这里的概念验证研究是在 Na 金属负极表面制造带有少量极性官能团和疏水成分的碳纳米球,从而显著提高 Na+ 镀层/剥离的均匀性。组装好的对称电池可在 3 mA-cm-2/3 mAh-cm-2 的条件下稳定循环 1300 小时。装有高负荷 Na3V2(PO4)3 (30 mg-cm-2)的完整电池在循环 100 次后库仑效率保持在 99.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regulate the chemical property of the carbon nanospheres layer modified on the surface of sodium metal anode to achieve high-load battery

The energy density of batteries can be increased by using high-load cathode material matched with sodium (Na) metal anode. However, the large polarization of the battery under such harsh conditions will promote the growth of Na dendrites and side reactions. Carbon materials are regarded as ideal modify layers on Na metal anode to regulate the Na+ plating/stripping behavior and inhibit the Na dendrites and side reactions due to their light weight, high stability and structural adjustability. However, commonly used carbon nanotubes and carbon nanofibers cannot enable these modified Na metal anodes to operate stably in full batteries with a high-load cathode (> 15 mg·cm−2). The most fundamental reason is that abundant polar functional groups on the surface bring serious side reactions and agglomerations lead to uneven Na+ flow. Here, a proof-of-concept study lies on fabrications of carbon nanospheres with small amount of polar functional groups and sodiophobic components on the surface of Na metal anode, which significantly enhances the uniformity of the Na+ plating/stripping. The assembled symmetric battery can cycle stability for 1300 h at 3 mA·cm−2/3 mAh·cm−2. The full battery with high-load Na3V2(PO4)3 (30 mg·cm−2) maintains a Coulombic efficiency of 99.7% after 100 cycles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
期刊最新文献
High-performance thermal interface materials enabled by vertical alignment of lightweight and soft graphene foams Precise synthesis of dual atom sites for electrocatalysis Liquid-encapsulated quantum dot for enhanced UV and thermal stability of quantum dot color conversion films Rational design and structural regulation of near-infrared silver chalcogenide quantum dots Exploring the potential of simple automation concepts for quantifying functional groups on nanomaterials with optical assays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1