挖掘用户一致且稳健的偏好,实现统一的跨领域推荐

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Knowledge and Data Engineering Pub Date : 2024-09-11 DOI:10.1109/TKDE.2024.3446581
Xiaolin Zheng;Weiming Liu;Chaochao Chen;Jiajie Su;Xinting Liao;Mengling Hu;Yanchao Tan
{"title":"挖掘用户一致且稳健的偏好,实现统一的跨领域推荐","authors":"Xiaolin Zheng;Weiming Liu;Chaochao Chen;Jiajie Su;Xinting Liao;Mengling Hu;Yanchao Tan","doi":"10.1109/TKDE.2024.3446581","DOIUrl":null,"url":null,"abstract":"Cross-Domain Recommendation has been popularly studied to resolve data sparsity problem via leveraging knowledge transfer across different domains. In this paper, we focus on the \n<italic>Unified Cross-Domain Recommendation</i>\n (\n<italic>Unified CDR</i>\n) problem. That is, how to enhance the recommendation performance within and cross domains when users are partially overlapped. It has two main challenges, i.e., 1) how to obtain robust matching solution among the whole users and 2) how to exploit consistent and accurate results across domains. To address these two challenges, we propose \n<monospace>MUCRP</monospace>\n, a cross-domain recommendation framework for the Unified CDR problem. \n<monospace>MUCRP</monospace>\n contains three modules, i.e., variational rating reconstruction module, robust variational embedding alignment module, and cycle-consistent preference extraction module. To solve the first challenge, we propose fused Gromov-Wasserstein distribution co-clustering optimal transport to obtain more robust matching solution via considering both semantic and structure information. To tackle the second challenge, we propose embedding-consistent and prediction-consistent losses via dual autoencoder framework to achieve consistent results. Our empirical study on Douban and Amazon datasets demonstrates that \n<monospace>MUCRP</monospace>\n significantly outperforms the state-of-the-art models.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"8758-8772"},"PeriodicalIF":8.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mining User Consistent and Robust Preference for Unified Cross Domain Recommendation\",\"authors\":\"Xiaolin Zheng;Weiming Liu;Chaochao Chen;Jiajie Su;Xinting Liao;Mengling Hu;Yanchao Tan\",\"doi\":\"10.1109/TKDE.2024.3446581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cross-Domain Recommendation has been popularly studied to resolve data sparsity problem via leveraging knowledge transfer across different domains. In this paper, we focus on the \\n<italic>Unified Cross-Domain Recommendation</i>\\n (\\n<italic>Unified CDR</i>\\n) problem. That is, how to enhance the recommendation performance within and cross domains when users are partially overlapped. It has two main challenges, i.e., 1) how to obtain robust matching solution among the whole users and 2) how to exploit consistent and accurate results across domains. To address these two challenges, we propose \\n<monospace>MUCRP</monospace>\\n, a cross-domain recommendation framework for the Unified CDR problem. \\n<monospace>MUCRP</monospace>\\n contains three modules, i.e., variational rating reconstruction module, robust variational embedding alignment module, and cycle-consistent preference extraction module. To solve the first challenge, we propose fused Gromov-Wasserstein distribution co-clustering optimal transport to obtain more robust matching solution via considering both semantic and structure information. To tackle the second challenge, we propose embedding-consistent and prediction-consistent losses via dual autoencoder framework to achieve consistent results. Our empirical study on Douban and Amazon datasets demonstrates that \\n<monospace>MUCRP</monospace>\\n significantly outperforms the state-of-the-art models.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"36 12\",\"pages\":\"8758-8772\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10678864/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10678864/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

跨领域推荐(Cross-Domain Recommendation)是通过利用不同领域间的知识转移来解决数据稀缺问题的热门研究课题。本文重点研究统一跨域推荐(Unified CDR)问题。即当用户部分重叠时,如何提高域内和跨域的推荐性能。它有两个主要挑战,即:1)如何在所有用户中获得稳健的匹配解决方案;2)如何利用跨域的一致且准确的结果。为了解决这两个难题,我们提出了针对统一 CDR 问题的跨域推荐框架 MUCRP。MUCRP 包含三个模块,即变分评级重构模块、鲁棒性变分嵌入对齐模块和周期一致性偏好提取模块。为了解决第一个挑战,我们提出了融合格罗莫夫-瓦瑟斯坦分布共聚最优传输,通过同时考虑语义和结构信息来获得更稳健的匹配解决方案。为解决第二个难题,我们通过双自动编码器框架提出了嵌入一致性损失和预测一致性损失,以实现一致的结果。我们在豆瓣和亚马逊数据集上进行的实证研究表明,MUCRP 的性能明显优于最先进的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mining User Consistent and Robust Preference for Unified Cross Domain Recommendation
Cross-Domain Recommendation has been popularly studied to resolve data sparsity problem via leveraging knowledge transfer across different domains. In this paper, we focus on the Unified Cross-Domain Recommendation ( Unified CDR ) problem. That is, how to enhance the recommendation performance within and cross domains when users are partially overlapped. It has two main challenges, i.e., 1) how to obtain robust matching solution among the whole users and 2) how to exploit consistent and accurate results across domains. To address these two challenges, we propose MUCRP , a cross-domain recommendation framework for the Unified CDR problem. MUCRP contains three modules, i.e., variational rating reconstruction module, robust variational embedding alignment module, and cycle-consistent preference extraction module. To solve the first challenge, we propose fused Gromov-Wasserstein distribution co-clustering optimal transport to obtain more robust matching solution via considering both semantic and structure information. To tackle the second challenge, we propose embedding-consistent and prediction-consistent losses via dual autoencoder framework to achieve consistent results. Our empirical study on Douban and Amazon datasets demonstrates that MUCRP significantly outperforms the state-of-the-art models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
期刊最新文献
SE Factual Knowledge in Frozen Giant Code Model: A Study on FQN and Its Retrieval Online Dynamic Hybrid Broad Learning System for Real-Time Safety Assessment of Dynamic Systems Iterative Soft Prompt-Tuning for Unsupervised Domain Adaptation A Derivative Topic Dissemination Model Based on Representation Learning and Topic Relevance L-ASCRA: A Linearithmic Time Approximate Spectral Clustering Algorithm Using Topologically-Preserved Representatives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1