三维全极化拓扑等静态超材料

Zheng Tang, Fangyuan Ma, Feng Li, Yugui Yao, Di Zhou
{"title":"三维全极化拓扑等静态超材料","authors":"Zheng Tang, Fangyuan Ma, Feng Li, Yugui Yao, Di Zhou","doi":"arxiv-2409.02607","DOIUrl":null,"url":null,"abstract":"Topological surface states are unique to topological materials and are immune\nto disturbances. In isostatic lattices, mechanical topological floppy modes\nexhibit softness depending on the polarization relative to the terminating\nsurface. However, in three dimensions, the polarization of topological floppy\nmodes is disrupted by the ubiquitous mechanical Weyl lines. Here, we\ndemonstrate, both theoretically and experimentally, the fully-polarized\ntopological mechanical phases free of Weyl lines. Floppy modes emerge\nexclusively on a particular surface of the three-dimensional isostatic\nstructure, leading to the strongly asymmetric stiffness between opposing\nboundaries. Additionally, uniform soft strains can reversibly shift the lattice\nconfiguration to Weyl phases, reducing the stiffness contrast to a trivially\ncomparable level. Our work demonstrates the fully-polarized topological\nmechanical phases in three dimensions, and paves the way towards engineering\nsoft and adaptive metamaterials.","PeriodicalId":501146,"journal":{"name":"arXiv - PHYS - Soft Condensed Matter","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully-Polarized Topological Isostatic Metamaterials in Three Dimensions\",\"authors\":\"Zheng Tang, Fangyuan Ma, Feng Li, Yugui Yao, Di Zhou\",\"doi\":\"arxiv-2409.02607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Topological surface states are unique to topological materials and are immune\\nto disturbances. In isostatic lattices, mechanical topological floppy modes\\nexhibit softness depending on the polarization relative to the terminating\\nsurface. However, in three dimensions, the polarization of topological floppy\\nmodes is disrupted by the ubiquitous mechanical Weyl lines. Here, we\\ndemonstrate, both theoretically and experimentally, the fully-polarized\\ntopological mechanical phases free of Weyl lines. Floppy modes emerge\\nexclusively on a particular surface of the three-dimensional isostatic\\nstructure, leading to the strongly asymmetric stiffness between opposing\\nboundaries. Additionally, uniform soft strains can reversibly shift the lattice\\nconfiguration to Weyl phases, reducing the stiffness contrast to a trivially\\ncomparable level. Our work demonstrates the fully-polarized topological\\nmechanical phases in three dimensions, and paves the way towards engineering\\nsoft and adaptive metamaterials.\",\"PeriodicalId\":501146,\"journal\":{\"name\":\"arXiv - PHYS - Soft Condensed Matter\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Soft Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Soft Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

拓扑表面态是拓扑材料所独有的,并且不受干扰。在等静态晶格中,机械拓扑翻转模表现出的柔软性取决于相对于端面的极化。然而,在三维空间中,拓扑翻转模的极化会受到无处不在的机械韦尔线的干扰。在这里,我们从理论和实验两方面证明了没有韦尔线的全极化拓扑机械相。在三维等静压结构的某一特定表面上会出现软模态,从而导致对立边界之间的刚度极不对称。此外,均匀的软应变可以使晶格配置可逆地转向韦尔相,从而将刚度对比降低到微不足道的可比水平。我们的工作展示了三维空间中完全极化的拓扑力学相位,为工程软性和自适应超材料铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fully-Polarized Topological Isostatic Metamaterials in Three Dimensions
Topological surface states are unique to topological materials and are immune to disturbances. In isostatic lattices, mechanical topological floppy modes exhibit softness depending on the polarization relative to the terminating surface. However, in three dimensions, the polarization of topological floppy modes is disrupted by the ubiquitous mechanical Weyl lines. Here, we demonstrate, both theoretically and experimentally, the fully-polarized topological mechanical phases free of Weyl lines. Floppy modes emerge exclusively on a particular surface of the three-dimensional isostatic structure, leading to the strongly asymmetric stiffness between opposing boundaries. Additionally, uniform soft strains can reversibly shift the lattice configuration to Weyl phases, reducing the stiffness contrast to a trivially comparable level. Our work demonstrates the fully-polarized topological mechanical phases in three dimensions, and paves the way towards engineering soft and adaptive metamaterials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The elastica sling Lifting a granular box by a half-buried rod Length scales in electrolytes Mapping self-avoiding walk on obstacle-ridden lattice onto chelation of heavy metal ions: Monte Carlo study Universality of the close packing properties and markers of isotropic-to-tetratic phase change in quasi-one-dimensional superdisk fluid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1