大型复合板中应力波传播的数值模型和实验验证

IF 2.3 3区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES Journal of Reinforced Plastics and Composites Pub Date : 2024-08-13 DOI:10.1177/07316844241272955
Binayak Bhandari, Phyo Thu Maung, Gangadhara B. Prusty
{"title":"大型复合板中应力波传播的数值模型和实验验证","authors":"Binayak Bhandari, Phyo Thu Maung, Gangadhara B. Prusty","doi":"10.1177/07316844241272955","DOIUrl":null,"url":null,"abstract":"This study investigates stress waves application for non-destructive inspection and structural health monitoring in large laminated composite panels. This study investigates Lamb wave dispersion under two boundary conditions: fixed support and simply support. Lamb wave propagation is examined under two conditions: one with a 100 kHz excitation frequency to simulate internal defects, and the other with a 30N impulse load to simulate external events. Both scenarios include cases with and without cutouts. Experimental and numerical analyses are conducted to examine stress wave propagation characteristics in these panels. The experimental phase focuses on discerning propagation time differences attributable to cutouts, while the three-dimensional (3-D) numerical model analyses propagation time, path, and frequencies. Results reveal a significant time discrepancy between panels with and without cutouts, indicating that cutouts introduce delays in wave propagation due to disruptions in the propagation path. Comparative analysis affirms the reliability and accuracy of the numerical approach, aligning with outcomes from the experimental approach. This research contributes insights into stress wave behaviour, demonstrating its potential for effective non-destructive inspection and structural health monitoring in laminated composites across diverse structural applications.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"13 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical model and experimental validation of stress waves propagation in large composite panels\",\"authors\":\"Binayak Bhandari, Phyo Thu Maung, Gangadhara B. Prusty\",\"doi\":\"10.1177/07316844241272955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates stress waves application for non-destructive inspection and structural health monitoring in large laminated composite panels. This study investigates Lamb wave dispersion under two boundary conditions: fixed support and simply support. Lamb wave propagation is examined under two conditions: one with a 100 kHz excitation frequency to simulate internal defects, and the other with a 30N impulse load to simulate external events. Both scenarios include cases with and without cutouts. Experimental and numerical analyses are conducted to examine stress wave propagation characteristics in these panels. The experimental phase focuses on discerning propagation time differences attributable to cutouts, while the three-dimensional (3-D) numerical model analyses propagation time, path, and frequencies. Results reveal a significant time discrepancy between panels with and without cutouts, indicating that cutouts introduce delays in wave propagation due to disruptions in the propagation path. Comparative analysis affirms the reliability and accuracy of the numerical approach, aligning with outcomes from the experimental approach. This research contributes insights into stress wave behaviour, demonstrating its potential for effective non-destructive inspection and structural health monitoring in laminated composites across diverse structural applications.\",\"PeriodicalId\":16943,\"journal\":{\"name\":\"Journal of Reinforced Plastics and Composites\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Reinforced Plastics and Composites\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/07316844241272955\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reinforced Plastics and Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/07316844241272955","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了应力波在大型层压复合板的无损检测和结构健康监测中的应用。本研究调查了两种边界条件下的兰姆波扩散情况:固定支撑和简单支撑。兰姆波在两种条件下传播:一种是模拟内部缺陷的 100 kHz 激励频率,另一种是模拟外部事件的 30N 冲击载荷。两种情况都包括有缺口和无缺口的情况。我们进行了实验和数值分析,以检查应力波在这些面板中的传播特性。实验阶段的重点是辨别可归因于切口的传播时间差异,而三维(3-D)数值模型则分析传播时间、路径和频率。结果显示,有切口和无切口的面板在时间上存在明显差异,表明切口由于传播路径中断而导致波传播延迟。对比分析证实了数值方法的可靠性和准确性,与实验方法的结果一致。这项研究有助于深入了解应力波行为,证明了其在各种结构应用中对层压复合材料进行有效的无损检测和结构健康监测的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical model and experimental validation of stress waves propagation in large composite panels
This study investigates stress waves application for non-destructive inspection and structural health monitoring in large laminated composite panels. This study investigates Lamb wave dispersion under two boundary conditions: fixed support and simply support. Lamb wave propagation is examined under two conditions: one with a 100 kHz excitation frequency to simulate internal defects, and the other with a 30N impulse load to simulate external events. Both scenarios include cases with and without cutouts. Experimental and numerical analyses are conducted to examine stress wave propagation characteristics in these panels. The experimental phase focuses on discerning propagation time differences attributable to cutouts, while the three-dimensional (3-D) numerical model analyses propagation time, path, and frequencies. Results reveal a significant time discrepancy between panels with and without cutouts, indicating that cutouts introduce delays in wave propagation due to disruptions in the propagation path. Comparative analysis affirms the reliability and accuracy of the numerical approach, aligning with outcomes from the experimental approach. This research contributes insights into stress wave behaviour, demonstrating its potential for effective non-destructive inspection and structural health monitoring in laminated composites across diverse structural applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Reinforced Plastics and Composites
Journal of Reinforced Plastics and Composites 工程技术-材料科学:复合
CiteScore
5.40
自引率
6.50%
发文量
82
审稿时长
1.3 months
期刊介绍: The Journal of Reinforced Plastics and Composites is a fully peer-reviewed international journal that publishes original research and review articles on a broad range of today''s reinforced plastics and composites including areas in: Constituent materials: matrix materials, reinforcements and coatings. Properties and performance: The results of testing, predictive models, and in-service evaluation of a wide range of materials are published, providing the reader with extensive properties data for reference. Analysis and design: Frequency reports on these subjects inform the reader of analytical techniques, design processes and the many design options available in materials composition. Processing and fabrication: There is increased interest among materials engineers in cost-effective processing. Applications: Reports on new materials R&D are often related to the service requirements of specific application areas, such as automotive, marine, construction and aviation. Reports on special topics are regularly included such as recycling, environmental effects, novel materials, computer-aided design, predictive modelling, and "smart" composite materials. "The articles in the Journal of Reinforced Plastics and Products are must reading for engineers in industry and for researchers working on leading edge problems" Professor Emeritus Stephen W Tsai National Sun Yat-sen University, Taiwan This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Effect of fly ash chemical components on epoxy mortar composite material performance Shear capacity of slender FRP-RC beams utilizing a hybrid ANN with the firefly optimizer Cooperative effect of hybrid polyethylene-basalt fibers on crack width control and mechanical properties in ECC Analysis of curing deformation for resin matrix composite T-shaped stiffened panel Deformation processes of polymer composites with stress concentrators under different reinforcement schemes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1