Renwen Liu, Bowen Yang, Wei Fan, Zheming Liu, Chensheng Wang and Lipeng He
{"title":"基于齿轮机构和磁性转子的增频压电波能量收集器研究","authors":"Renwen Liu, Bowen Yang, Wei Fan, Zheming Liu, Chensheng Wang and Lipeng He","doi":"10.1088/1361-665x/ad765c","DOIUrl":null,"url":null,"abstract":"Wave energy is a widespread clean energy source, but harvesting low-frequency wave energy efficiently remains a challenge. In this paper, a frequency-increasing piezoelectric wave energy harvester (FPWEH) based on gear mechanism and magnetic rotor is proposed. The gear mechanism transforms the vertical motion of the wave into the higher-frequency rotational motion of the magnetic rotor. The magnetic rotor is equipped with several rotating magnets and one revolution of the magnetic rotor enables multiple excitations of the piezoelectric cantilevers. Therefore, the wave excitation frequency is increased, so that the FPWEH can obtain better output performance. The major factors influencing output performance are determined through theoretical and simulation analysis, and a test system to simulate the wave environment is established. According to experimental findings, the FPWEH can generate an output voltage of 69.82 V and a maximum power of 28.33 mW when the external resistance is 20 kΩ. It can also successfully power thermohygrometer and light-emitting diodes. These results validate the feasibility of the FPWEH for providing electricity to electronics with low power requirements. This research also offers a novel approach to harvesting low-frequency wave energy.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":"12 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on a frequency-increasing piezoelectric wave energy harvester based on gear mechanism and magnetic rotor\",\"authors\":\"Renwen Liu, Bowen Yang, Wei Fan, Zheming Liu, Chensheng Wang and Lipeng He\",\"doi\":\"10.1088/1361-665x/ad765c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wave energy is a widespread clean energy source, but harvesting low-frequency wave energy efficiently remains a challenge. In this paper, a frequency-increasing piezoelectric wave energy harvester (FPWEH) based on gear mechanism and magnetic rotor is proposed. The gear mechanism transforms the vertical motion of the wave into the higher-frequency rotational motion of the magnetic rotor. The magnetic rotor is equipped with several rotating magnets and one revolution of the magnetic rotor enables multiple excitations of the piezoelectric cantilevers. Therefore, the wave excitation frequency is increased, so that the FPWEH can obtain better output performance. The major factors influencing output performance are determined through theoretical and simulation analysis, and a test system to simulate the wave environment is established. According to experimental findings, the FPWEH can generate an output voltage of 69.82 V and a maximum power of 28.33 mW when the external resistance is 20 kΩ. It can also successfully power thermohygrometer and light-emitting diodes. These results validate the feasibility of the FPWEH for providing electricity to electronics with low power requirements. This research also offers a novel approach to harvesting low-frequency wave energy.\",\"PeriodicalId\":21656,\"journal\":{\"name\":\"Smart Materials and Structures\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Materials and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-665x/ad765c\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad765c","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Research on a frequency-increasing piezoelectric wave energy harvester based on gear mechanism and magnetic rotor
Wave energy is a widespread clean energy source, but harvesting low-frequency wave energy efficiently remains a challenge. In this paper, a frequency-increasing piezoelectric wave energy harvester (FPWEH) based on gear mechanism and magnetic rotor is proposed. The gear mechanism transforms the vertical motion of the wave into the higher-frequency rotational motion of the magnetic rotor. The magnetic rotor is equipped with several rotating magnets and one revolution of the magnetic rotor enables multiple excitations of the piezoelectric cantilevers. Therefore, the wave excitation frequency is increased, so that the FPWEH can obtain better output performance. The major factors influencing output performance are determined through theoretical and simulation analysis, and a test system to simulate the wave environment is established. According to experimental findings, the FPWEH can generate an output voltage of 69.82 V and a maximum power of 28.33 mW when the external resistance is 20 kΩ. It can also successfully power thermohygrometer and light-emitting diodes. These results validate the feasibility of the FPWEH for providing electricity to electronics with low power requirements. This research also offers a novel approach to harvesting low-frequency wave energy.
期刊介绍:
Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures.
A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.