Zhihua Li, Yatong Wu, Jicong Du, Wen Qian, Sinian Wang, Fengsheng Li, Suhe Dong, Shunchang Jiao
{"title":"N-甲酰基蛋氨酸-亮氨酰-苯丙氨酸可防止辐照引起的造血和肠道损伤","authors":"Zhihua Li, Yatong Wu, Jicong Du, Wen Qian, Sinian Wang, Fengsheng Li, Suhe Dong, Shunchang Jiao","doi":"10.1186/s10020-024-00918-4","DOIUrl":null,"url":null,"abstract":"Ionizing radiation (IR), including radiotherapy, can exert lasting harm on living organisms. While liposaccharide (LPS) offers resistance to radiation damage, it also induces toxic responses. Thankfully, an LPS analogue called N-formylmethionine-leucyl-phenylalanine (fMLP) holds the potential to mitigate this toxicity, offering hope for radiation protection. Survival of C57BL/6 mice exposed to IR after administration with fMLP/LPS/WR-2721 or saline was recorded. Cell viability and apoptosis assay of bone marrow (BMC), spleen and small intestinal epithelial (HIECs) cells were tested by Cell Counting Kit-8 (CCK-8) and flow cytometry assay. Tissue damage was evaluated by Hematoxilin and Eosin (H&E), Ki-67, and TUNEL staining. RNA sequencing was performed to reveal potential mechanisms of fMLP-mediated radiation protection. Flow cytometry and western blot were performed to verify the radiation protection mechanism of fMLP on the cell cycle. The survival rates of C57BL/6 mice exposed to ionizing radiation after administering fMLP increased. fMLP demonstrated low toxicity in vitro and in vivo, maintaining cell viability and mitigating radiation-induced apoptosis. Moreover, it protected against tissue damage in the hematopoietic and intestinal system. RNA sequencing shed light on fMLP’s potential mechanism, suggesting its role in modulating innate immunity and cell cycling. This was evidenced by its ability to reverse radiation-induced G2/M phase arrests in HIECs. fMLP serves as a promising radioprotective agent, preserving cells and radiosensitive tissues from IR. Through its influence on the cell cycle, particularly reversing radiation-induced arrest in G2/M phases, fMLP offers protection against IR’s detrimental effects.","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N-formylmethionine-leucyl-phenylalanine protects against irradiation-induced damage to hematopoiesis and intestines\",\"authors\":\"Zhihua Li, Yatong Wu, Jicong Du, Wen Qian, Sinian Wang, Fengsheng Li, Suhe Dong, Shunchang Jiao\",\"doi\":\"10.1186/s10020-024-00918-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ionizing radiation (IR), including radiotherapy, can exert lasting harm on living organisms. While liposaccharide (LPS) offers resistance to radiation damage, it also induces toxic responses. Thankfully, an LPS analogue called N-formylmethionine-leucyl-phenylalanine (fMLP) holds the potential to mitigate this toxicity, offering hope for radiation protection. Survival of C57BL/6 mice exposed to IR after administration with fMLP/LPS/WR-2721 or saline was recorded. Cell viability and apoptosis assay of bone marrow (BMC), spleen and small intestinal epithelial (HIECs) cells were tested by Cell Counting Kit-8 (CCK-8) and flow cytometry assay. Tissue damage was evaluated by Hematoxilin and Eosin (H&E), Ki-67, and TUNEL staining. RNA sequencing was performed to reveal potential mechanisms of fMLP-mediated radiation protection. Flow cytometry and western blot were performed to verify the radiation protection mechanism of fMLP on the cell cycle. The survival rates of C57BL/6 mice exposed to ionizing radiation after administering fMLP increased. fMLP demonstrated low toxicity in vitro and in vivo, maintaining cell viability and mitigating radiation-induced apoptosis. Moreover, it protected against tissue damage in the hematopoietic and intestinal system. RNA sequencing shed light on fMLP’s potential mechanism, suggesting its role in modulating innate immunity and cell cycling. This was evidenced by its ability to reverse radiation-induced G2/M phase arrests in HIECs. fMLP serves as a promising radioprotective agent, preserving cells and radiosensitive tissues from IR. Through its influence on the cell cycle, particularly reversing radiation-induced arrest in G2/M phases, fMLP offers protection against IR’s detrimental effects.\",\"PeriodicalId\":18813,\"journal\":{\"name\":\"Molecular Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s10020-024-00918-4\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-024-00918-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
N-formylmethionine-leucyl-phenylalanine protects against irradiation-induced damage to hematopoiesis and intestines
Ionizing radiation (IR), including radiotherapy, can exert lasting harm on living organisms. While liposaccharide (LPS) offers resistance to radiation damage, it also induces toxic responses. Thankfully, an LPS analogue called N-formylmethionine-leucyl-phenylalanine (fMLP) holds the potential to mitigate this toxicity, offering hope for radiation protection. Survival of C57BL/6 mice exposed to IR after administration with fMLP/LPS/WR-2721 or saline was recorded. Cell viability and apoptosis assay of bone marrow (BMC), spleen and small intestinal epithelial (HIECs) cells were tested by Cell Counting Kit-8 (CCK-8) and flow cytometry assay. Tissue damage was evaluated by Hematoxilin and Eosin (H&E), Ki-67, and TUNEL staining. RNA sequencing was performed to reveal potential mechanisms of fMLP-mediated radiation protection. Flow cytometry and western blot were performed to verify the radiation protection mechanism of fMLP on the cell cycle. The survival rates of C57BL/6 mice exposed to ionizing radiation after administering fMLP increased. fMLP demonstrated low toxicity in vitro and in vivo, maintaining cell viability and mitigating radiation-induced apoptosis. Moreover, it protected against tissue damage in the hematopoietic and intestinal system. RNA sequencing shed light on fMLP’s potential mechanism, suggesting its role in modulating innate immunity and cell cycling. This was evidenced by its ability to reverse radiation-induced G2/M phase arrests in HIECs. fMLP serves as a promising radioprotective agent, preserving cells and radiosensitive tissues from IR. Through its influence on the cell cycle, particularly reversing radiation-induced arrest in G2/M phases, fMLP offers protection against IR’s detrimental effects.
期刊介绍:
Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.