毫米波多输入多输出系统中利用原子规范最小化和可重构智能表面增强信道估计

IF 1.7 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Communication Systems Pub Date : 2024-09-09 DOI:10.1002/dac.5973
Sundar Ganapathy, Karthikeyan Muthusamy
{"title":"毫米波多输入多输出系统中利用原子规范最小化和可重构智能表面增强信道估计","authors":"Sundar Ganapathy, Karthikeyan Muthusamy","doi":"10.1002/dac.5973","DOIUrl":null,"url":null,"abstract":"SummaryThe performance of millimeter‐wave (mmWave) multiple‐input multiple‐output (MIMO) systems has been significantly enhanced by the incorporation of dynamic reconfigurable intelligent surfaces (RIS). This paper proposes a novel dynamic channel estimation technique that combines dynamic atomic norm minimization with dynamic RIS to optimize RIS‐aided mmWave MIMO systems. Leveraging the dynamic nature of both atomic norm minimization and RIS, the proposed approach efficiently adapts to changing environmental conditions, providing robust and accurate channel estimation. By dynamically optimizing the RIS configuration, the system achieves improved spectral and energy efficiency, enabling high‐speed and reliable communication in challenging mmWave environments. Theoretical analysis and simulation results demonstrate the effectiveness of the proposed dynamic channel estimation technique, highlighting its potential for enhancing the performance of future wireless communication systems.","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced channel estimation with atomic norm minimization and reconfigurable intelligent surfaces in mmWave MIMO systems\",\"authors\":\"Sundar Ganapathy, Karthikeyan Muthusamy\",\"doi\":\"10.1002/dac.5973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SummaryThe performance of millimeter‐wave (mmWave) multiple‐input multiple‐output (MIMO) systems has been significantly enhanced by the incorporation of dynamic reconfigurable intelligent surfaces (RIS). This paper proposes a novel dynamic channel estimation technique that combines dynamic atomic norm minimization with dynamic RIS to optimize RIS‐aided mmWave MIMO systems. Leveraging the dynamic nature of both atomic norm minimization and RIS, the proposed approach efficiently adapts to changing environmental conditions, providing robust and accurate channel estimation. By dynamically optimizing the RIS configuration, the system achieves improved spectral and energy efficiency, enabling high‐speed and reliable communication in challenging mmWave environments. Theoretical analysis and simulation results demonstrate the effectiveness of the proposed dynamic channel estimation technique, highlighting its potential for enhancing the performance of future wireless communication systems.\",\"PeriodicalId\":13946,\"journal\":{\"name\":\"International Journal of Communication Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Communication Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/dac.5973\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/dac.5973","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

摘要毫米波(mmWave)多输入多输出(MIMO)系统的性能因采用了动态可重构智能表面(RIS)而显著提高。本文提出了一种新颖的动态信道估计技术,它将动态原子规范最小化与动态 RIS 相结合,以优化 RIS 辅助的毫米波 MIMO 系统。利用原子规范最小化和 RIS 的动态特性,所提出的方法能有效适应不断变化的环境条件,提供稳健而准确的信道估计。通过动态优化 RIS 配置,该系统提高了频谱和能效,从而在具有挑战性的毫米波环境中实现了高速、可靠的通信。理论分析和仿真结果证明了所提出的动态信道估计技术的有效性,凸显了它在提高未来无线通信系统性能方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced channel estimation with atomic norm minimization and reconfigurable intelligent surfaces in mmWave MIMO systems
SummaryThe performance of millimeter‐wave (mmWave) multiple‐input multiple‐output (MIMO) systems has been significantly enhanced by the incorporation of dynamic reconfigurable intelligent surfaces (RIS). This paper proposes a novel dynamic channel estimation technique that combines dynamic atomic norm minimization with dynamic RIS to optimize RIS‐aided mmWave MIMO systems. Leveraging the dynamic nature of both atomic norm minimization and RIS, the proposed approach efficiently adapts to changing environmental conditions, providing robust and accurate channel estimation. By dynamically optimizing the RIS configuration, the system achieves improved spectral and energy efficiency, enabling high‐speed and reliable communication in challenging mmWave environments. Theoretical analysis and simulation results demonstrate the effectiveness of the proposed dynamic channel estimation technique, highlighting its potential for enhancing the performance of future wireless communication systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
9.50%
发文量
323
审稿时长
7.9 months
期刊介绍: The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues. The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered: -Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.) -System control, network/service management -Network and Internet protocols and standards -Client-server, distributed and Web-based communication systems -Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity -Trials of advanced systems and services; their implementation and evaluation -Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation -Performance evaluation issues and methods.
期刊最新文献
Implementation of optimal routing in heterogeneous wireless sensor network with multi‐channel Media Access Control protocol using Enhanced Henry Gas Solubility Optimizer Collision detection and mitigation based on optimization and Kronecker recurrent neural network in WSN Dual‐port circular patch antenna array: Enhancing gain and minimizing cross‐polarization for mm‐wave 5G networks Performance enhancement in hybrid SDN using advanced deep learning with multi‐objective optimization frameworks under heterogeneous environments Enhanced capacitated next controller placement in software‐defined network with modified capacity constraint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1