通过物理气相沉积实现无缓冲层半透明过氧化物太阳能电池的顶部透明电极研究进展

IF 6 3区 工程技术 Q2 ENERGY & FUELS Solar RRL Pub Date : 2024-08-27 DOI:10.1002/solr.202400354
Yury Smirnov, Gaukhar Nigmetova, Annie Ng
{"title":"通过物理气相沉积实现无缓冲层半透明过氧化物太阳能电池的顶部透明电极研究进展","authors":"Yury Smirnov,&nbsp;Gaukhar Nigmetova,&nbsp;Annie Ng","doi":"10.1002/solr.202400354","DOIUrl":null,"url":null,"abstract":"<p>The advancements in halide perovskite materials, celebrated for their exceptional optoelectronic properties, have not only led to a remarkable increase in the efficiency of perovskite solar cells (PSCs) but also opened avenues for the development of semitransparent devices. Such devices are ideally suited for integration into building facades and for use in tandem solar cell configurations. However, depositing transparent electrodes (TEs) on top of the charge transport layers in PSC poses significant challenges. Physical vapor deposition (PVD), commonly used in the industry to prepare transparent conducting oxides (TCOs) as TEs, can introduce plasma-induced damage during the process, which decreases the efficiency of the final devices. While incorporating a buffer layer is the typical approach to mitigate plasma damage, it also increases the complexity and costs of solar cell fabrication. This perspective focuses on the developments of buffer-free semitransparent PSCs. It highlights the shift away from the typical approach of incorporating a buffer layer. Through a comprehensive analysis of recent research, this work presents successful cases of direct TCO deposition onto transport layers, evaluates scalability and stability, and concludes with recommendations for optimizing PVD processes in the fabrication of buffer-free PSCs.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 17","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400354","citationCount":"0","resultStr":"{\"title\":\"Advances in Top Transparent Electrodes by Physical Vapor Deposition for Buffer Layer-Free Semitransparent Perovskite Solar Cells\",\"authors\":\"Yury Smirnov,&nbsp;Gaukhar Nigmetova,&nbsp;Annie Ng\",\"doi\":\"10.1002/solr.202400354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The advancements in halide perovskite materials, celebrated for their exceptional optoelectronic properties, have not only led to a remarkable increase in the efficiency of perovskite solar cells (PSCs) but also opened avenues for the development of semitransparent devices. Such devices are ideally suited for integration into building facades and for use in tandem solar cell configurations. However, depositing transparent electrodes (TEs) on top of the charge transport layers in PSC poses significant challenges. Physical vapor deposition (PVD), commonly used in the industry to prepare transparent conducting oxides (TCOs) as TEs, can introduce plasma-induced damage during the process, which decreases the efficiency of the final devices. While incorporating a buffer layer is the typical approach to mitigate plasma damage, it also increases the complexity and costs of solar cell fabrication. This perspective focuses on the developments of buffer-free semitransparent PSCs. It highlights the shift away from the typical approach of incorporating a buffer layer. Through a comprehensive analysis of recent research, this work presents successful cases of direct TCO deposition onto transport layers, evaluates scalability and stability, and concludes with recommendations for optimizing PVD processes in the fabrication of buffer-free PSCs.</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"8 17\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400354\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400354\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400354","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

卤化物透辉石材料因其卓越的光电特性而备受赞誉,它的进步不仅显著提高了透辉石太阳能电池(PSCs)的效率,还为半透明设备的开发开辟了道路。这种装置非常适合集成到建筑外墙和串联太阳能电池配置中使用。然而,在 PSC 的电荷传输层上沉积透明电极(TE)是一项重大挑战。业界常用物理气相沉积(PVD)法制备透明导电氧化物(TCO)作为透明电极,但在此过程中会产生等离子体引起的损伤,从而降低最终器件的效率。虽然加入缓冲层是减轻等离子损伤的典型方法,但它也增加了太阳能电池制造的复杂性和成本。本视角重点关注无缓冲半透明 PSC 的发展。它强调了摒弃加入缓冲层的典型方法的转变。通过对近期研究的全面分析,本论文介绍了在传输层上直接沉积 TCO 的成功案例,评估了可扩展性和稳定性,最后提出了在制造无缓冲 PSC 时优化 PVD 工艺的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advances in Top Transparent Electrodes by Physical Vapor Deposition for Buffer Layer-Free Semitransparent Perovskite Solar Cells

The advancements in halide perovskite materials, celebrated for their exceptional optoelectronic properties, have not only led to a remarkable increase in the efficiency of perovskite solar cells (PSCs) but also opened avenues for the development of semitransparent devices. Such devices are ideally suited for integration into building facades and for use in tandem solar cell configurations. However, depositing transparent electrodes (TEs) on top of the charge transport layers in PSC poses significant challenges. Physical vapor deposition (PVD), commonly used in the industry to prepare transparent conducting oxides (TCOs) as TEs, can introduce plasma-induced damage during the process, which decreases the efficiency of the final devices. While incorporating a buffer layer is the typical approach to mitigate plasma damage, it also increases the complexity and costs of solar cell fabrication. This perspective focuses on the developments of buffer-free semitransparent PSCs. It highlights the shift away from the typical approach of incorporating a buffer layer. Through a comprehensive analysis of recent research, this work presents successful cases of direct TCO deposition onto transport layers, evaluates scalability and stability, and concludes with recommendations for optimizing PVD processes in the fabrication of buffer-free PSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
期刊最新文献
Masthead Revealing Defect Passivation and Charge Extraction by Ultrafast Spectroscopy in Perovskite Solar Cells through a Multifunctional Lewis Base Additive Approach Perovskite-Based Tandem Solar Cells Masthead Investigation of Grain Growth in Chalcopyrite CuInS2 Photoelectrodes Synthesized under Wet Chemical Conditions for Bias-Free Photoelectrochemical Water Splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1