{"title":"乳制品加工污泥的产生、组成和价值评估综述:基于循环经济的可持续方法","authors":"Jyotishikha Mohapatra, Ramesh Kumar, Bikram Basak, Rijuta Ganesh Saratale, Ganesh Dattatraya Saratale, Amrita Mishra, Suraj K. Tripathy, Byong-Hun Jeon, Sankha Chakrabortty","doi":"10.1016/j.jiec.2024.08.045","DOIUrl":null,"url":null,"abstract":"This dairy industry has grown considerably in the last decade to meet the increasing requirements of the ever-rising human population. Large volumes of solid waste are generated during the processing of dairy wastewater, known as dairy processing sludge (DPS). Organic and inorganic chemicals, carbon, nitrogen, phosphorus, chlorides, sulfides, fats, oils, and grease comprise most of the DPS. Discharging untreated DPS into surrounding water sources harms the environment because of its elevated organic contents. Alternatively, the DPS can potentially be transformed into struvite, char, and ash with some fertilizer equivalence values. DPS contains heavy metals, pathogens, and synthetic organic compounds (hormones and pesticides) and requires pretreatment before its direct application as a fertilizer equivalent. DPS can be effectively treated by non-conventional methods, such as earthworms converting it into nutrient-rich fertilizer. Moreover, circular economy principles can be fulfilled by recycling DPS into value-added products, such as bacterial growth media for rhizobia, stabilizing contaminated soil for growing biofuel plants (e.g., ), and further used as a potential substrate for biodiesel production. This review elucidates the generation, composition, treatments, and opportunities for reusing DPS in a sustainable and eco-friendly manner that minimizes environmental pollution and identifies important future research prospects.","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"6 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review on generation, composition, and valorization of dairy processing sludge: A circular economy-based sustainable approach\",\"authors\":\"Jyotishikha Mohapatra, Ramesh Kumar, Bikram Basak, Rijuta Ganesh Saratale, Ganesh Dattatraya Saratale, Amrita Mishra, Suraj K. Tripathy, Byong-Hun Jeon, Sankha Chakrabortty\",\"doi\":\"10.1016/j.jiec.2024.08.045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This dairy industry has grown considerably in the last decade to meet the increasing requirements of the ever-rising human population. Large volumes of solid waste are generated during the processing of dairy wastewater, known as dairy processing sludge (DPS). Organic and inorganic chemicals, carbon, nitrogen, phosphorus, chlorides, sulfides, fats, oils, and grease comprise most of the DPS. Discharging untreated DPS into surrounding water sources harms the environment because of its elevated organic contents. Alternatively, the DPS can potentially be transformed into struvite, char, and ash with some fertilizer equivalence values. DPS contains heavy metals, pathogens, and synthetic organic compounds (hormones and pesticides) and requires pretreatment before its direct application as a fertilizer equivalent. DPS can be effectively treated by non-conventional methods, such as earthworms converting it into nutrient-rich fertilizer. Moreover, circular economy principles can be fulfilled by recycling DPS into value-added products, such as bacterial growth media for rhizobia, stabilizing contaminated soil for growing biofuel plants (e.g., ), and further used as a potential substrate for biodiesel production. This review elucidates the generation, composition, treatments, and opportunities for reusing DPS in a sustainable and eco-friendly manner that minimizes environmental pollution and identifies important future research prospects.\",\"PeriodicalId\":363,\"journal\":{\"name\":\"Journal of Industrial and Engineering Chemistry\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial and Engineering Chemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jiec.2024.08.045\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jiec.2024.08.045","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A review on generation, composition, and valorization of dairy processing sludge: A circular economy-based sustainable approach
This dairy industry has grown considerably in the last decade to meet the increasing requirements of the ever-rising human population. Large volumes of solid waste are generated during the processing of dairy wastewater, known as dairy processing sludge (DPS). Organic and inorganic chemicals, carbon, nitrogen, phosphorus, chlorides, sulfides, fats, oils, and grease comprise most of the DPS. Discharging untreated DPS into surrounding water sources harms the environment because of its elevated organic contents. Alternatively, the DPS can potentially be transformed into struvite, char, and ash with some fertilizer equivalence values. DPS contains heavy metals, pathogens, and synthetic organic compounds (hormones and pesticides) and requires pretreatment before its direct application as a fertilizer equivalent. DPS can be effectively treated by non-conventional methods, such as earthworms converting it into nutrient-rich fertilizer. Moreover, circular economy principles can be fulfilled by recycling DPS into value-added products, such as bacterial growth media for rhizobia, stabilizing contaminated soil for growing biofuel plants (e.g., ), and further used as a potential substrate for biodiesel production. This review elucidates the generation, composition, treatments, and opportunities for reusing DPS in a sustainable and eco-friendly manner that minimizes environmental pollution and identifies important future research prospects.
期刊介绍:
Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.