用于 γ 射线探测的高效 Cs3Cu2I5 单晶的生长和特性分析

{"title":"用于 γ 射线探测的高效 Cs3Cu2I5 单晶的生长和特性分析","authors":"","doi":"10.1016/j.nima.2024.169867","DOIUrl":null,"url":null,"abstract":"<div><p>Metal halide perovskites, particularly zero-dimensional (0D) variants, have garnered significant attention as scintillator materials for various applications such as <span><math><mi>γ</mi></math></span>-ray spectroscopy, X-ray imaging, and security. Among these, Cs<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Cu<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>I<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span> has emerged as a promising candidate owing to its exceptional characteristics, such as good energy resolution, high light output, and high stopping power. Although there is sufficient data available on the scintillation properties of Cs<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Cu<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>I<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span> Single Crystal (SC) grown using various methods, there still remains a scarcity of data on the scintillation properties of SCs grown using solvent evaporation method at room temperature. In the present work, Cs<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Cu<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>I<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span> SCs have been grown using the solvent evaporation method at room temperature and characterized for their structural, optical, and scintillation properties. The SC shows an orthorhombic structure with a bandgap of 3.58 eV. The optical properties of the SC reveal the existence of Self-Trapped Exciton (STE). The SC exhibits an energy resolution of 5.80 ± 0.05% at 662 keV and a light output of 41,000 photons/MeV, making it suitable for <span><math><mi>γ</mi></math></span>-rays detection. The intrinsic photopeak efficiencies of Cs<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Cu<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>I<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span> SC for <span><math><mi>γ</mi></math></span>-rays are reported for the first time. GEANT4 simulation toolkit has been used to perform realistic simulations, and the simulated and experimental efficiencies are compared. Simulations show that Cs<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Cu<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>I<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span> scintillator has twice the efficiency of the NaI:Tl scintillator.</p></div>","PeriodicalId":19359,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth and characterization of highly efficient Cs3Cu2I5 single crystal for γ-ray detection\",\"authors\":\"\",\"doi\":\"10.1016/j.nima.2024.169867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metal halide perovskites, particularly zero-dimensional (0D) variants, have garnered significant attention as scintillator materials for various applications such as <span><math><mi>γ</mi></math></span>-ray spectroscopy, X-ray imaging, and security. Among these, Cs<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Cu<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>I<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span> has emerged as a promising candidate owing to its exceptional characteristics, such as good energy resolution, high light output, and high stopping power. Although there is sufficient data available on the scintillation properties of Cs<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Cu<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>I<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span> Single Crystal (SC) grown using various methods, there still remains a scarcity of data on the scintillation properties of SCs grown using solvent evaporation method at room temperature. In the present work, Cs<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Cu<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>I<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span> SCs have been grown using the solvent evaporation method at room temperature and characterized for their structural, optical, and scintillation properties. The SC shows an orthorhombic structure with a bandgap of 3.58 eV. The optical properties of the SC reveal the existence of Self-Trapped Exciton (STE). The SC exhibits an energy resolution of 5.80 ± 0.05% at 662 keV and a light output of 41,000 photons/MeV, making it suitable for <span><math><mi>γ</mi></math></span>-rays detection. The intrinsic photopeak efficiencies of Cs<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Cu<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>I<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span> SC for <span><math><mi>γ</mi></math></span>-rays are reported for the first time. GEANT4 simulation toolkit has been used to perform realistic simulations, and the simulated and experimental efficiencies are compared. Simulations show that Cs<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Cu<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>I<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span> scintillator has twice the efficiency of the NaI:Tl scintillator.</p></div>\",\"PeriodicalId\":19359,\"journal\":{\"name\":\"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168900224007939\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168900224007939","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

金属卤化物闪烁体,尤其是零维(0D)变体,作为闪烁体材料在γ射线光谱学、X射线成像和安防等各种应用领域受到了广泛关注。其中,Cs3Cu2I5 由于具有良好的能量分辨率、高光输出和高阻挡功率等优异特性,已成为一种很有前途的候选材料。虽然目前已有足够的数据说明采用各种方法生长的 Cs3Cu2I5 单晶(SC)的闪烁特性,但关于在室温下采用溶剂蒸发法生长的 SC 的闪烁特性的数据仍然很少。本研究采用溶剂蒸发法在室温下生长了 Cs3Cu2I5 单晶,并对其结构、光学和闪烁特性进行了表征。该聚合氯化铝呈现出带隙为 3.58 eV 的正交菱形结构。SC 的光学特性显示存在自俘获激子(STE)。该 SC 在 662 keV 时的能量分辨率为 5.80 ± 0.05%,光输出为 41,000 光子/兆电子伏,因此适用于 γ 射线探测。首次报道了 Cs3Cu2I5 SC 对γ 射线的本征光致发光效率。利用 GEANT4 仿真工具包进行了实际模拟,并对模拟效率和实验效率进行了比较。模拟结果表明,Cs3Cu2I5 闪烁器的效率是 NaI:Tl 闪烁器的两倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Growth and characterization of highly efficient Cs3Cu2I5 single crystal for γ-ray detection

Metal halide perovskites, particularly zero-dimensional (0D) variants, have garnered significant attention as scintillator materials for various applications such as γ-ray spectroscopy, X-ray imaging, and security. Among these, Cs3Cu2I5 has emerged as a promising candidate owing to its exceptional characteristics, such as good energy resolution, high light output, and high stopping power. Although there is sufficient data available on the scintillation properties of Cs3Cu2I5 Single Crystal (SC) grown using various methods, there still remains a scarcity of data on the scintillation properties of SCs grown using solvent evaporation method at room temperature. In the present work, Cs3Cu2I5 SCs have been grown using the solvent evaporation method at room temperature and characterized for their structural, optical, and scintillation properties. The SC shows an orthorhombic structure with a bandgap of 3.58 eV. The optical properties of the SC reveal the existence of Self-Trapped Exciton (STE). The SC exhibits an energy resolution of 5.80 ± 0.05% at 662 keV and a light output of 41,000 photons/MeV, making it suitable for γ-rays detection. The intrinsic photopeak efficiencies of Cs3Cu2I5 SC for γ-rays are reported for the first time. GEANT4 simulation toolkit has been used to perform realistic simulations, and the simulated and experimental efficiencies are compared. Simulations show that Cs3Cu2I5 scintillator has twice the efficiency of the NaI:Tl scintillator.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
21.40%
发文量
787
审稿时长
1 months
期刊介绍: Section A of Nuclear Instruments and Methods in Physics Research publishes papers on design, manufacturing and performance of scientific instruments with an emphasis on large scale facilities. This includes the development of particle accelerators, ion sources, beam transport systems and target arrangements as well as the use of secondary phenomena such as synchrotron radiation and free electron lasers. It also includes all types of instrumentation for the detection and spectrometry of radiations from high energy processes and nuclear decays, as well as instrumentation for experiments at nuclear reactors. Specialized electronics for nuclear and other types of spectrometry as well as computerization of measurements and control systems in this area also find their place in the A section. Theoretical as well as experimental papers are accepted.
期刊最新文献
Data analysis procedures to improve energy resolution in silicon detectors using GET electronics Corrigendum to “Positron accumulation in the GBAR experiment” [Nucl. Inst. Method. Phys. Res. A 1040 (2022) 167263] The LHCb VELO detector: Design, operation and first results Further study of the Singer array in near-field coded aperture imaging for extended sources Cooling and noise performance of the ATLAS ITk strip system tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1