磷矿选矿过程中碘的存在、分布和归宿

IF 6.9 2区 环境科学与生态学 Q1 ENGINEERING, CHEMICAL Process Safety and Environmental Protection Pub Date : 2024-09-02 DOI:10.1016/j.psep.2024.08.117
{"title":"磷矿选矿过程中碘的存在、分布和归宿","authors":"","doi":"10.1016/j.psep.2024.08.117","DOIUrl":null,"url":null,"abstract":"<div><p>Numerous beneficiation techniques, such as washing, grinding, flotation, digesting, and calcination, are used to concentrate the minerals found in phosphate rocks, which include apatite, carbonatites, and silicates. Significant iodine levels are often found in phosphate ore minerals, which have a distinctive geochemical occurrence. However, the exact occurrence and distribution of iodine in these minerals are not yet thoroughly understood. A study was carried out to investigate the iodine's distribution, occurrence modes (phases), and release rate in Moroccan phosphate as it undergoes the beneficiation process. The samples underwent a multi-analytical approach combining mineralogical and chemical characterization using ICP-MS, ICP-OES, XRD, elements titration, and Pearson correlation analysis for interelement relationships. Calcination, digestion, and Heavy liquid separation is used to study the fate of iodine. The analysis indicates that iodine is primarily found in fluorapatite, with local concentrations ranging from 35 to 130 ppm. The most enriched grains/zones are associated with fluorapatite, enriched in P<sub>2</sub>O<sub>5</sub>, F<sup>-</sup>. in addition, iodine is positively correlated with its main components, including P<sub>2</sub>O<sub>5</sub>, F<sup>-</sup>, SO<sub>3</sub>, Na<sub>2</sub>O, CaO, and REEs. The flotation and heavy liquid separation process used for calcite and silicate removal is acting as an iodine and P<sub>2</sub>O<sub>5</sub> concentrator, given that 99 % of iodine occurs in the apatite phase. However, it has been demonstrated that iodine can be released during the digestion of phosphate rock. Where the initial iodine content is distributed among phosphoric acid, PG, and the gaseous phase, constituting 35 %, 25 %, and 40 %, respectively. Furthermore, the calcination of phosphate rock between 800–1000 °C shows that total iodine is released with gases in I<sub>2</sub> form, leading to an increase in the concentration of iodine in the surrounding area. In this regard, an integrated pyrometallurgical process has been proposed for the valorization of iodine as silver iodide. This process involves trapping gaseous iodine in an alkaline solution, followed by precipitation, thereby contributing to the overarching objectives of the circular economy and environmental protection.</p></div>","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Occurrence, distribution and fate of iodine during phosphate ore beneficiation process\",\"authors\":\"\",\"doi\":\"10.1016/j.psep.2024.08.117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Numerous beneficiation techniques, such as washing, grinding, flotation, digesting, and calcination, are used to concentrate the minerals found in phosphate rocks, which include apatite, carbonatites, and silicates. Significant iodine levels are often found in phosphate ore minerals, which have a distinctive geochemical occurrence. However, the exact occurrence and distribution of iodine in these minerals are not yet thoroughly understood. A study was carried out to investigate the iodine's distribution, occurrence modes (phases), and release rate in Moroccan phosphate as it undergoes the beneficiation process. The samples underwent a multi-analytical approach combining mineralogical and chemical characterization using ICP-MS, ICP-OES, XRD, elements titration, and Pearson correlation analysis for interelement relationships. Calcination, digestion, and Heavy liquid separation is used to study the fate of iodine. The analysis indicates that iodine is primarily found in fluorapatite, with local concentrations ranging from 35 to 130 ppm. The most enriched grains/zones are associated with fluorapatite, enriched in P<sub>2</sub>O<sub>5</sub>, F<sup>-</sup>. in addition, iodine is positively correlated with its main components, including P<sub>2</sub>O<sub>5</sub>, F<sup>-</sup>, SO<sub>3</sub>, Na<sub>2</sub>O, CaO, and REEs. The flotation and heavy liquid separation process used for calcite and silicate removal is acting as an iodine and P<sub>2</sub>O<sub>5</sub> concentrator, given that 99 % of iodine occurs in the apatite phase. However, it has been demonstrated that iodine can be released during the digestion of phosphate rock. Where the initial iodine content is distributed among phosphoric acid, PG, and the gaseous phase, constituting 35 %, 25 %, and 40 %, respectively. Furthermore, the calcination of phosphate rock between 800–1000 °C shows that total iodine is released with gases in I<sub>2</sub> form, leading to an increase in the concentration of iodine in the surrounding area. In this regard, an integrated pyrometallurgical process has been proposed for the valorization of iodine as silver iodide. This process involves trapping gaseous iodine in an alkaline solution, followed by precipitation, thereby contributing to the overarching objectives of the circular economy and environmental protection.</p></div>\",\"PeriodicalId\":20743,\"journal\":{\"name\":\"Process Safety and Environmental Protection\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Process Safety and Environmental Protection\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957582024010899\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957582024010899","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

许多选矿技术,如洗涤、研磨、浮选、消化和煅烧,都被用来浓缩磷酸盐岩中的矿物,其中包括磷灰石、碳酸盐岩和硅酸盐。磷矿石矿物中通常含有大量的碘,具有独特的地球化学特征。然而,人们对这些矿物中碘的确切存在和分布情况还没有彻底了解。我们开展了一项研究,以调查摩洛哥磷酸盐在选矿过程中的碘分布、出现模式(阶段)和释放率。样品采用了多种分析方法,包括使用 ICP-MS、ICP-OES、XRD、元素滴定和元素间关系的皮尔逊相关分析进行矿物学和化学特征描述。煅烧、消化和重液分离被用来研究碘的去向。分析表明,碘主要存在于氟磷灰石中,局部浓度在 35 至 130 ppm 之间。此外,碘与其主要成分(包括 P2O5、F-、SO3、Na2O、CaO 和 REEs)呈正相关。由于 99% 的碘存在于磷灰石相中,因此用于去除方解石和硅酸盐的浮选和重液分离过程就是碘和 P2O5 的浓缩过程。不过,事实证明,在消化磷酸盐岩的过程中也会释放碘。初始碘含量分布在磷酸、PG 和气相中,分别占 35%、25% 和 40%。此外,磷矿石在 800-1000 °C之间煅烧表明,总碘以I2形式随气体释放,导致周围区域的碘浓度增加。在这方面,有人提出了一种将碘转化为碘化银的综合火法冶金工艺。该工艺包括在碱性溶液中捕获气态碘,然后进行沉淀,从而有助于实现循环经济和环境保护的总体目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Occurrence, distribution and fate of iodine during phosphate ore beneficiation process

Numerous beneficiation techniques, such as washing, grinding, flotation, digesting, and calcination, are used to concentrate the minerals found in phosphate rocks, which include apatite, carbonatites, and silicates. Significant iodine levels are often found in phosphate ore minerals, which have a distinctive geochemical occurrence. However, the exact occurrence and distribution of iodine in these minerals are not yet thoroughly understood. A study was carried out to investigate the iodine's distribution, occurrence modes (phases), and release rate in Moroccan phosphate as it undergoes the beneficiation process. The samples underwent a multi-analytical approach combining mineralogical and chemical characterization using ICP-MS, ICP-OES, XRD, elements titration, and Pearson correlation analysis for interelement relationships. Calcination, digestion, and Heavy liquid separation is used to study the fate of iodine. The analysis indicates that iodine is primarily found in fluorapatite, with local concentrations ranging from 35 to 130 ppm. The most enriched grains/zones are associated with fluorapatite, enriched in P2O5, F-. in addition, iodine is positively correlated with its main components, including P2O5, F-, SO3, Na2O, CaO, and REEs. The flotation and heavy liquid separation process used for calcite and silicate removal is acting as an iodine and P2O5 concentrator, given that 99 % of iodine occurs in the apatite phase. However, it has been demonstrated that iodine can be released during the digestion of phosphate rock. Where the initial iodine content is distributed among phosphoric acid, PG, and the gaseous phase, constituting 35 %, 25 %, and 40 %, respectively. Furthermore, the calcination of phosphate rock between 800–1000 °C shows that total iodine is released with gases in I2 form, leading to an increase in the concentration of iodine in the surrounding area. In this regard, an integrated pyrometallurgical process has been proposed for the valorization of iodine as silver iodide. This process involves trapping gaseous iodine in an alkaline solution, followed by precipitation, thereby contributing to the overarching objectives of the circular economy and environmental protection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Process Safety and Environmental Protection
Process Safety and Environmental Protection 环境科学-工程:化工
CiteScore
11.40
自引率
15.40%
发文量
929
审稿时长
8.0 months
期刊介绍: The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice. PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers. PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.
期刊最新文献
An avalanche transistor-based Marx circuit pulse generator with sub-nanosecond, high frequency and high-voltage for pathogenic Escherichia coli ablation Fabrication of heterogeneous catalyst for production of biodiesel form municipal sludge Soil utilization analysis of synergistic pyrolysis products of flue gas desulfurization gypsum and biomass Dispersion and explosion characteristics of multi-phase fuel with different charge structure Optimizing multivariate alarm systems: A study on joint false alarm rate, and joint missed alarm rate using linear programming technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1