José A. Perusquía , Jim E. Griffin , Cristiano Villa
{"title":"Beta-CoRM:用于 n-gram 剖面分析的贝叶斯方法","authors":"José A. Perusquía , Jim E. Griffin , Cristiano Villa","doi":"10.1016/j.csda.2024.108056","DOIUrl":null,"url":null,"abstract":"<div><p><em>n</em>-gram profiles have been successfully and widely used to analyse long sequences of potentially differing lengths for clustering or classification. Mainly, machine learning algorithms have been used for this purpose but, despite their predictive performance, these methods cannot discover hidden structures or provide a full probabilistic representation of the data. A novel class of Bayesian generative models designed for <em>n</em>-gram profiles used as binary attributes have been designed to address this. The flexibility of the proposed modelling allows to consider a straightforward approach to feature selection in the generative model. Furthermore, a slice sampling algorithm is derived for a fast inferential procedure, which is applied to synthetic and real data scenarios and shows that feature selection can improve classification accuracy.</p></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"202 ","pages":"Article 108056"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167947324001403/pdfft?md5=9000ddccd99ed2327e978f13456b5381&pid=1-s2.0-S0167947324001403-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Beta-CoRM: A Bayesian approach for n-gram profiles analysis\",\"authors\":\"José A. Perusquía , Jim E. Griffin , Cristiano Villa\",\"doi\":\"10.1016/j.csda.2024.108056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>n</em>-gram profiles have been successfully and widely used to analyse long sequences of potentially differing lengths for clustering or classification. Mainly, machine learning algorithms have been used for this purpose but, despite their predictive performance, these methods cannot discover hidden structures or provide a full probabilistic representation of the data. A novel class of Bayesian generative models designed for <em>n</em>-gram profiles used as binary attributes have been designed to address this. The flexibility of the proposed modelling allows to consider a straightforward approach to feature selection in the generative model. Furthermore, a slice sampling algorithm is derived for a fast inferential procedure, which is applied to synthetic and real data scenarios and shows that feature selection can improve classification accuracy.</p></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":\"202 \",\"pages\":\"Article 108056\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167947324001403/pdfft?md5=9000ddccd99ed2327e978f13456b5381&pid=1-s2.0-S0167947324001403-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947324001403\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001403","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Beta-CoRM: A Bayesian approach for n-gram profiles analysis
n-gram profiles have been successfully and widely used to analyse long sequences of potentially differing lengths for clustering or classification. Mainly, machine learning algorithms have been used for this purpose but, despite their predictive performance, these methods cannot discover hidden structures or provide a full probabilistic representation of the data. A novel class of Bayesian generative models designed for n-gram profiles used as binary attributes have been designed to address this. The flexibility of the proposed modelling allows to consider a straightforward approach to feature selection in the generative model. Furthermore, a slice sampling algorithm is derived for a fast inferential procedure, which is applied to synthetic and real data scenarios and shows that feature selection can improve classification accuracy.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]