{"title":"利用飞行时间光发射电子显微镜探索带纳米孔的等离子体聚焦透镜中的纳米级光发射","authors":"Guiqi Wang , Boyu Ji , Yang Xu , Jingquan Lin","doi":"10.1016/j.cjph.2024.08.044","DOIUrl":null,"url":null,"abstract":"<div><p>Propagating surface plasmon polaritons (SPPs) provide an important platform for the design of various photoelectric devices such as nanometer-scale ultrafast electron sources. Here, a high-brightness nanoscale photoelectron source in a plasmon focusing lens with a nanohole is investigated using time-of-flight photoemission electron microscopy (TOF-PEEM). By exploiting the high spatial resolution of TOF-PEEM, it is found that the photoemission was localized at the nanoscale in both x and y directions. In addition, a large multiphoton photoemission enhancement was achieved and a strong-field effect was observed due to the interplay between the SPP and the nanohole. This paper provides a new idea for the development of the high-brightness nanoscale photoelectron sources and a deep understanding of the interplay between SPP and LSP.</p></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoscale photoemission in a plasmon focusing lens with a nanohole explored by time-of-flight photoemission electron microscopy\",\"authors\":\"Guiqi Wang , Boyu Ji , Yang Xu , Jingquan Lin\",\"doi\":\"10.1016/j.cjph.2024.08.044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Propagating surface plasmon polaritons (SPPs) provide an important platform for the design of various photoelectric devices such as nanometer-scale ultrafast electron sources. Here, a high-brightness nanoscale photoelectron source in a plasmon focusing lens with a nanohole is investigated using time-of-flight photoemission electron microscopy (TOF-PEEM). By exploiting the high spatial resolution of TOF-PEEM, it is found that the photoemission was localized at the nanoscale in both x and y directions. In addition, a large multiphoton photoemission enhancement was achieved and a strong-field effect was observed due to the interplay between the SPP and the nanohole. This paper provides a new idea for the development of the high-brightness nanoscale photoelectron sources and a deep understanding of the interplay between SPP and LSP.</p></div>\",\"PeriodicalId\":10340,\"journal\":{\"name\":\"Chinese Journal of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0577907324003459\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907324003459","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
传播表面等离子体极化子(SPPs)为设计各种光电器件(如纳米级超快电子源)提供了一个重要平台。本文利用飞行时间光发射电子显微镜(TOF-PEEM)研究了带有纳米孔的等离子体聚焦透镜中的高亮度纳米级光电子源。通过利用 TOF-PEEM 的高空间分辨率,研究发现光电子发射在 x 和 y 方向上都在纳米级定位。此外,由于 SPP 和纳米孔之间的相互作用,还实现了较大的多光子光发射增强,并观察到了强场效应。这篇论文为开发高亮度纳米级光电子源提供了新思路,也为深入理解 SPP 和 LSP 之间的相互作用提供了新思路。
Nanoscale photoemission in a plasmon focusing lens with a nanohole explored by time-of-flight photoemission electron microscopy
Propagating surface plasmon polaritons (SPPs) provide an important platform for the design of various photoelectric devices such as nanometer-scale ultrafast electron sources. Here, a high-brightness nanoscale photoelectron source in a plasmon focusing lens with a nanohole is investigated using time-of-flight photoemission electron microscopy (TOF-PEEM). By exploiting the high spatial resolution of TOF-PEEM, it is found that the photoemission was localized at the nanoscale in both x and y directions. In addition, a large multiphoton photoemission enhancement was achieved and a strong-field effect was observed due to the interplay between the SPP and the nanohole. This paper provides a new idea for the development of the high-brightness nanoscale photoelectron sources and a deep understanding of the interplay between SPP and LSP.
期刊介绍:
The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics.
The editors welcome manuscripts on:
-General Physics: Statistical and Quantum Mechanics, etc.-
Gravitation and Astrophysics-
Elementary Particles and Fields-
Nuclear Physics-
Atomic, Molecular, and Optical Physics-
Quantum Information and Quantum Computation-
Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks-
Plasma and Beam Physics-
Condensed Matter: Structure, etc.-
Condensed Matter: Electronic Properties, etc.-
Polymer, Soft Matter, Biological, and Interdisciplinary Physics.
CJP publishes regular research papers, feature articles and review papers.