设计和制备碳涂层 NaZnFe(MoO4)3复合材料作为锂/钠离子电池的新型负极材料

IF 3.2 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Journal of Solid State Chemistry Pub Date : 2024-09-10 DOI:10.1016/j.jssc.2024.125007
Xin Zhao, Xiuxia Lu, Limin Zhang, Jianyin Zhang
{"title":"设计和制备碳涂层 NaZnFe(MoO4)3复合材料作为锂/钠离子电池的新型负极材料","authors":"Xin Zhao,&nbsp;Xiuxia Lu,&nbsp;Limin Zhang,&nbsp;Jianyin Zhang","doi":"10.1016/j.jssc.2024.125007","DOIUrl":null,"url":null,"abstract":"<div><p>The investigation of new anode materials with novel crystal structure and high ionic conductivity is of great significance for potential applications in lithium/sodium-ion batteries. Herein, carbon-coated NaZnFe(MoO<sub>4</sub>)<sub>3</sub> composite was produced by solid state method coupled with the mechanical ball milling technique. The crystal and morphology were accurately confirmed by XRD, XPS and SEM techniques. When tested with lithium-ion batteries, the charging capacity reached an impressive 1005 mA h g<sup>−1</sup> during the initial cycle and 840 mA h g<sup>−1</sup> after 50 cycles, resulting in a capacity retention of 84.2 %. This performance is 40 % higher than that of the sample without a carbon layer coating. When utilized as an anode for sodium-ion batteries, the carbon-coated NaZnFe(MoO<sub>4</sub>)<sub>3</sub> composite electrode exhibited a remarkable specific capacity of 152 mA h g<sup>−1</sup> and a high capacity retention of 74.9 % after 100 cycles at a rate of 100 mA g<sup>−1</sup>. Furthermore, the charge capacity was measured at 105 mA h g<sup>−1</sup> after 500 cycles test conducted at 500 mA g<sup>−1</sup>, with a capacity retention of 86.0 %. The advantages of polyanionic molybdate NaZnFe(MoO<sub>4</sub>)<sub>3</sub> combined with the simple carbon coating strategy make it possible to application in the next generation of Li/Na secondary batteries.</p></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"340 ","pages":"Article 125007"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and preparation of carbon-coated NaZnFe(MoO4)3 composite as novel anode materials for lithium/sodium-ion batteries\",\"authors\":\"Xin Zhao,&nbsp;Xiuxia Lu,&nbsp;Limin Zhang,&nbsp;Jianyin Zhang\",\"doi\":\"10.1016/j.jssc.2024.125007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The investigation of new anode materials with novel crystal structure and high ionic conductivity is of great significance for potential applications in lithium/sodium-ion batteries. Herein, carbon-coated NaZnFe(MoO<sub>4</sub>)<sub>3</sub> composite was produced by solid state method coupled with the mechanical ball milling technique. The crystal and morphology were accurately confirmed by XRD, XPS and SEM techniques. When tested with lithium-ion batteries, the charging capacity reached an impressive 1005 mA h g<sup>−1</sup> during the initial cycle and 840 mA h g<sup>−1</sup> after 50 cycles, resulting in a capacity retention of 84.2 %. This performance is 40 % higher than that of the sample without a carbon layer coating. When utilized as an anode for sodium-ion batteries, the carbon-coated NaZnFe(MoO<sub>4</sub>)<sub>3</sub> composite electrode exhibited a remarkable specific capacity of 152 mA h g<sup>−1</sup> and a high capacity retention of 74.9 % after 100 cycles at a rate of 100 mA g<sup>−1</sup>. Furthermore, the charge capacity was measured at 105 mA h g<sup>−1</sup> after 500 cycles test conducted at 500 mA g<sup>−1</sup>, with a capacity retention of 86.0 %. The advantages of polyanionic molybdate NaZnFe(MoO<sub>4</sub>)<sub>3</sub> combined with the simple carbon coating strategy make it possible to application in the next generation of Li/Na secondary batteries.</p></div>\",\"PeriodicalId\":378,\"journal\":{\"name\":\"Journal of Solid State Chemistry\",\"volume\":\"340 \",\"pages\":\"Article 125007\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022459624004614\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022459624004614","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

研究具有新颖晶体结构和高离子电导率的新型负极材料对于锂/钠离子电池的潜在应用具有重要意义。本文采用固态法结合机械球磨技术制备了碳包覆 NaZnFe(MoO4)3 复合材料。通过 XRD、XPS 和 SEM 技术对其晶体和形貌进行了精确确认。用锂离子电池进行测试时,初始循环的充电容量达到了惊人的 1005 mA h g-1,50 个循环后达到 840 mA h g-1,容量保持率为 84.2%。这一性能比没有碳层涂层的样品高出 40%。碳涂层 NaZnFe(MoO4)3 复合电极用作钠离子电池的阳极时,比容量高达 152 mA h g-1,以 100 mA g-1 的速率循环 100 次后,容量保持率高达 74.9%。此外,在 500 mA g-1 下进行 500 次循环测试后,测得的充电容量为 105 mA h g-1,容量保持率为 86.0%。多阴离子钼酸盐 NaZnFe(MoO4)3 的优势与简单的碳涂层策略相结合,使其有可能应用于下一代锂/镍二次电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and preparation of carbon-coated NaZnFe(MoO4)3 composite as novel anode materials for lithium/sodium-ion batteries

The investigation of new anode materials with novel crystal structure and high ionic conductivity is of great significance for potential applications in lithium/sodium-ion batteries. Herein, carbon-coated NaZnFe(MoO4)3 composite was produced by solid state method coupled with the mechanical ball milling technique. The crystal and morphology were accurately confirmed by XRD, XPS and SEM techniques. When tested with lithium-ion batteries, the charging capacity reached an impressive 1005 mA h g−1 during the initial cycle and 840 mA h g−1 after 50 cycles, resulting in a capacity retention of 84.2 %. This performance is 40 % higher than that of the sample without a carbon layer coating. When utilized as an anode for sodium-ion batteries, the carbon-coated NaZnFe(MoO4)3 composite electrode exhibited a remarkable specific capacity of 152 mA h g−1 and a high capacity retention of 74.9 % after 100 cycles at a rate of 100 mA g−1. Furthermore, the charge capacity was measured at 105 mA h g−1 after 500 cycles test conducted at 500 mA g−1, with a capacity retention of 86.0 %. The advantages of polyanionic molybdate NaZnFe(MoO4)3 combined with the simple carbon coating strategy make it possible to application in the next generation of Li/Na secondary batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Solid State Chemistry
Journal of Solid State Chemistry 化学-无机化学与核化学
CiteScore
6.00
自引率
9.10%
发文量
848
审稿时长
25 days
期刊介绍: Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.
期刊最新文献
Terbium-doped metal-organic frameworks: Dielectric and ferroelectric properties with enhanced electrochemical sensing for heavy metal ion detection Construction of Schottky barrier diode with a novel one-dimensional Cu(II)-based coordination polymer Trifluoromethyl-functionalized zirconium-based metal-organic cage (ZrT-(CF3)2): An efficient adsorbent for salicylic acid removal Enhancing yellow-green emission in Eu/Tb co-doped tellurite glasses controlled by Lu2O3 Preparation and tribological behavior of Cr3C2 particles reinforced Al matrix composite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1