利用人工智能诊断和治疗自闭症谱系障碍:当前趋势与未来展望

IF 3.8 4区 医学 Q1 PSYCHIATRY Asian journal of psychiatry Pub Date : 2024-09-10 DOI:10.1016/j.ajp.2024.104241
Nitu Wankhede , Mayur Kale , Madhu Shukla , Deepak Nathiya , Roopashree R. , Parjinder Kaur , Barkha Goyanka , Sandip Rahangdale , Brijesh Taksande , Aman Upaganlawar , Mohammad Khalid , Sridevi Chigurupati , Milind Umekar , Spandana Rajendra Kopalli , Sushruta Koppula
{"title":"利用人工智能诊断和治疗自闭症谱系障碍:当前趋势与未来展望","authors":"Nitu Wankhede ,&nbsp;Mayur Kale ,&nbsp;Madhu Shukla ,&nbsp;Deepak Nathiya ,&nbsp;Roopashree R. ,&nbsp;Parjinder Kaur ,&nbsp;Barkha Goyanka ,&nbsp;Sandip Rahangdale ,&nbsp;Brijesh Taksande ,&nbsp;Aman Upaganlawar ,&nbsp;Mohammad Khalid ,&nbsp;Sridevi Chigurupati ,&nbsp;Milind Umekar ,&nbsp;Spandana Rajendra Kopalli ,&nbsp;Sushruta Koppula","doi":"10.1016/j.ajp.2024.104241","DOIUrl":null,"url":null,"abstract":"<div><p>The integration of artificial intelligence (AI) into the diagnosis and treatment of autism spectrum disorder (ASD) represents a promising frontier in healthcare. This review explores the current landscape and future prospects of AI technologies in ASD diagnostics and interventions. AI enables early detection and personalized assessment of ASD through the analysis of diverse data sources such as behavioural patterns, neuroimaging, genetics, and electronic health records. Machine learning algorithms exhibit high accuracy in distinguishing ASD from neurotypical development and other developmental disorders, facilitating timely interventions. Furthermore, AI-driven therapeutic interventions, including augmentative communication systems, virtual reality-based training, and robot-assisted therapies, show potential in improving social interactions and communication skills in individuals with ASD. Despite challenges such as data privacy and interpretability, the future of AI in ASD holds promise for refining diagnostic accuracy, deploying telehealth platforms, and tailoring treatment plans. By harnessing AI, clinicians can enhance ASD care delivery, empower patients, and advance our understanding of this complex condition.</p></div>","PeriodicalId":8543,"journal":{"name":"Asian journal of psychiatry","volume":"101 ","pages":"Article 104241"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging AI for the diagnosis and treatment of autism spectrum disorder: Current trends and future prospects\",\"authors\":\"Nitu Wankhede ,&nbsp;Mayur Kale ,&nbsp;Madhu Shukla ,&nbsp;Deepak Nathiya ,&nbsp;Roopashree R. ,&nbsp;Parjinder Kaur ,&nbsp;Barkha Goyanka ,&nbsp;Sandip Rahangdale ,&nbsp;Brijesh Taksande ,&nbsp;Aman Upaganlawar ,&nbsp;Mohammad Khalid ,&nbsp;Sridevi Chigurupati ,&nbsp;Milind Umekar ,&nbsp;Spandana Rajendra Kopalli ,&nbsp;Sushruta Koppula\",\"doi\":\"10.1016/j.ajp.2024.104241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The integration of artificial intelligence (AI) into the diagnosis and treatment of autism spectrum disorder (ASD) represents a promising frontier in healthcare. This review explores the current landscape and future prospects of AI technologies in ASD diagnostics and interventions. AI enables early detection and personalized assessment of ASD through the analysis of diverse data sources such as behavioural patterns, neuroimaging, genetics, and electronic health records. Machine learning algorithms exhibit high accuracy in distinguishing ASD from neurotypical development and other developmental disorders, facilitating timely interventions. Furthermore, AI-driven therapeutic interventions, including augmentative communication systems, virtual reality-based training, and robot-assisted therapies, show potential in improving social interactions and communication skills in individuals with ASD. Despite challenges such as data privacy and interpretability, the future of AI in ASD holds promise for refining diagnostic accuracy, deploying telehealth platforms, and tailoring treatment plans. By harnessing AI, clinicians can enhance ASD care delivery, empower patients, and advance our understanding of this complex condition.</p></div>\",\"PeriodicalId\":8543,\"journal\":{\"name\":\"Asian journal of psychiatry\",\"volume\":\"101 \",\"pages\":\"Article 104241\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian journal of psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1876201824003344\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian journal of psychiatry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876201824003344","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

摘要

将人工智能(AI)融入自闭症谱系障碍(ASD)的诊断和治疗是医疗保健领域前景广阔的前沿技术。本综述探讨了人工智能技术在自闭症谱系障碍诊断和干预方面的现状和未来前景。通过分析行为模式、神经影像学、遗传学和电子健康记录等各种数据源,人工智能可实现对 ASD 的早期检测和个性化评估。机器学习算法在区分 ASD 与神经典型发育和其他发育障碍方面表现出很高的准确性,有助于及时进行干预。此外,人工智能驱动的治疗干预措施,包括辅助交流系统、基于虚拟现实的训练和机器人辅助疗法,都显示出改善 ASD 患者社交互动和交流技能的潜力。尽管存在数据隐私和可解释性等挑战,但人工智能在 ASD 领域的未来有望提高诊断准确性、部署远程医疗平台和量身定制治疗计划。通过利用人工智能,临床医生可以改善 ASD 的护理服务,增强患者的能力,并促进我们对这一复杂病症的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leveraging AI for the diagnosis and treatment of autism spectrum disorder: Current trends and future prospects

The integration of artificial intelligence (AI) into the diagnosis and treatment of autism spectrum disorder (ASD) represents a promising frontier in healthcare. This review explores the current landscape and future prospects of AI technologies in ASD diagnostics and interventions. AI enables early detection and personalized assessment of ASD through the analysis of diverse data sources such as behavioural patterns, neuroimaging, genetics, and electronic health records. Machine learning algorithms exhibit high accuracy in distinguishing ASD from neurotypical development and other developmental disorders, facilitating timely interventions. Furthermore, AI-driven therapeutic interventions, including augmentative communication systems, virtual reality-based training, and robot-assisted therapies, show potential in improving social interactions and communication skills in individuals with ASD. Despite challenges such as data privacy and interpretability, the future of AI in ASD holds promise for refining diagnostic accuracy, deploying telehealth platforms, and tailoring treatment plans. By harnessing AI, clinicians can enhance ASD care delivery, empower patients, and advance our understanding of this complex condition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asian journal of psychiatry
Asian journal of psychiatry Medicine-Psychiatry and Mental Health
CiteScore
12.70
自引率
5.30%
发文量
297
审稿时长
35 days
期刊介绍: The Asian Journal of Psychiatry serves as a comprehensive resource for psychiatrists, mental health clinicians, neurologists, physicians, mental health students, and policymakers. Its goal is to facilitate the exchange of research findings and clinical practices between Asia and the global community. The journal focuses on psychiatric research relevant to Asia, covering preclinical, clinical, service system, and policy development topics. It also highlights the socio-cultural diversity of the region in relation to mental health.
期刊最新文献
Digital companionship or psychological risk? The role of AI characters in shaping youth mental health. Perinatal mental health within the contours of the Indian MTP Act framework: From the lens of the Indian judiciary. Clinical factors for all-cause mortality in people with schizophrenia: A retrospective cohort study between 2013 and 2021. Deep brain stimulation - A primer for psychiatrists. Improving acceptance of psychosis risk terminology through cultural sensitivity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1