Zilong Zheng , Haijing Sun , Weihai Xue , Deli Duan , Guoliang Chen , Xin Zhou , Jie Sun
{"title":"风力涡轮机叶片前缘保护涂层的制备及其水滴侵蚀行为研究","authors":"Zilong Zheng , Haijing Sun , Weihai Xue , Deli Duan , Guoliang Chen , Xin Zhou , Jie Sun","doi":"10.1016/j.wear.2024.205568","DOIUrl":null,"url":null,"abstract":"<div><p>The damage caused by rain droplet erosion to the leading edge of wind turbine blades is extremely severe. To reduce this issue, in this study, hydroxyl-terminated polybutadiene (HTPB) and isophorone diisocyanate (IPDI) were used as the polyurethane (PU) polyol and curing agent, respectively, to prepare a PU coating with a high resistance to water droplet erosion (WDE) for the protection of the leading edge of wind turbine blades. The effect of <em>n</em> (–NCO):<em>n</em> (–OH) (<em>R</em>-value, <em>n</em> is the molar ratio) on the mechanical properties and WDE resistance of PU coatings, the relationship between the two performances, and the influence of the erosion conditions on the WDE behavior were investigated for the first time. The results show the existence of a correlation between the mechanical properties (hardness, impact, flexibility, and tensile strength) and WDE resistance of the coating. While, a better abrasion resistance is found not to result in a better WDE resistance. The PU coating with an <em>R</em>-value of 1.2 shows an optimal WDE resistance in both atomization and jet erosion experiments. In atomized droplet erosion (ADE) experiments, the change in erosion velocity accelerates the incubation period of coating erosion damage and increases the erosion rate. In jet droplet erosion (JDE) experiments, the damage to the coating is closely related to the erosion angle, reaching a maximum at an impact angle of 60°. Furthermore, in the ADE experiments, various erosion morphologies, such as pits, grooves, cracks, and stepped texture, are observed on the damaged coating surface. While, regarding the JDE experiments, holes, grooves, and cracks are observed. Such damage is caused by the combined effects of water hammer pressure, lateral jets, and local permeation.</p></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"558 ","pages":"Article 205568"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of protective coatings for the leading edge of wind turbine blades and investigation of their water droplet erosion behavior\",\"authors\":\"Zilong Zheng , Haijing Sun , Weihai Xue , Deli Duan , Guoliang Chen , Xin Zhou , Jie Sun\",\"doi\":\"10.1016/j.wear.2024.205568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The damage caused by rain droplet erosion to the leading edge of wind turbine blades is extremely severe. To reduce this issue, in this study, hydroxyl-terminated polybutadiene (HTPB) and isophorone diisocyanate (IPDI) were used as the polyurethane (PU) polyol and curing agent, respectively, to prepare a PU coating with a high resistance to water droplet erosion (WDE) for the protection of the leading edge of wind turbine blades. The effect of <em>n</em> (–NCO):<em>n</em> (–OH) (<em>R</em>-value, <em>n</em> is the molar ratio) on the mechanical properties and WDE resistance of PU coatings, the relationship between the two performances, and the influence of the erosion conditions on the WDE behavior were investigated for the first time. The results show the existence of a correlation between the mechanical properties (hardness, impact, flexibility, and tensile strength) and WDE resistance of the coating. While, a better abrasion resistance is found not to result in a better WDE resistance. The PU coating with an <em>R</em>-value of 1.2 shows an optimal WDE resistance in both atomization and jet erosion experiments. In atomized droplet erosion (ADE) experiments, the change in erosion velocity accelerates the incubation period of coating erosion damage and increases the erosion rate. In jet droplet erosion (JDE) experiments, the damage to the coating is closely related to the erosion angle, reaching a maximum at an impact angle of 60°. Furthermore, in the ADE experiments, various erosion morphologies, such as pits, grooves, cracks, and stepped texture, are observed on the damaged coating surface. While, regarding the JDE experiments, holes, grooves, and cracks are observed. Such damage is caused by the combined effects of water hammer pressure, lateral jets, and local permeation.</p></div>\",\"PeriodicalId\":23970,\"journal\":{\"name\":\"Wear\",\"volume\":\"558 \",\"pages\":\"Article 205568\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wear\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0043164824003338\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wear","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043164824003338","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Preparation of protective coatings for the leading edge of wind turbine blades and investigation of their water droplet erosion behavior
The damage caused by rain droplet erosion to the leading edge of wind turbine blades is extremely severe. To reduce this issue, in this study, hydroxyl-terminated polybutadiene (HTPB) and isophorone diisocyanate (IPDI) were used as the polyurethane (PU) polyol and curing agent, respectively, to prepare a PU coating with a high resistance to water droplet erosion (WDE) for the protection of the leading edge of wind turbine blades. The effect of n (–NCO):n (–OH) (R-value, n is the molar ratio) on the mechanical properties and WDE resistance of PU coatings, the relationship between the two performances, and the influence of the erosion conditions on the WDE behavior were investigated for the first time. The results show the existence of a correlation between the mechanical properties (hardness, impact, flexibility, and tensile strength) and WDE resistance of the coating. While, a better abrasion resistance is found not to result in a better WDE resistance. The PU coating with an R-value of 1.2 shows an optimal WDE resistance in both atomization and jet erosion experiments. In atomized droplet erosion (ADE) experiments, the change in erosion velocity accelerates the incubation period of coating erosion damage and increases the erosion rate. In jet droplet erosion (JDE) experiments, the damage to the coating is closely related to the erosion angle, reaching a maximum at an impact angle of 60°. Furthermore, in the ADE experiments, various erosion morphologies, such as pits, grooves, cracks, and stepped texture, are observed on the damaged coating surface. While, regarding the JDE experiments, holes, grooves, and cracks are observed. Such damage is caused by the combined effects of water hammer pressure, lateral jets, and local permeation.
期刊介绍:
Wear journal is dedicated to the advancement of basic and applied knowledge concerning the nature of wear of materials. Broadly, topics of interest range from development of fundamental understanding of the mechanisms of wear to innovative solutions to practical engineering problems. Authors of experimental studies are expected to comment on the repeatability of the data, and whenever possible, conduct multiple measurements under similar testing conditions. Further, Wear embraces the highest standards of professional ethics, and the detection of matching content, either in written or graphical form, from other publications by the current authors or by others, may result in rejection.