通过确定收敛锥的演变规律来预测代表性基本体积

IF 3.3 2区 工程技术 Q3 ENERGY & FUELS Geomechanics for Energy and the Environment Pub Date : 2024-09-10 DOI:10.1016/j.gete.2024.100594
Sijmen Zwarts, Martin Lesueur
{"title":"通过确定收敛锥的演变规律来预测代表性基本体积","authors":"Sijmen Zwarts,&nbsp;Martin Lesueur","doi":"10.1016/j.gete.2024.100594","DOIUrl":null,"url":null,"abstract":"<div><p>In order to characterise a rock formation prior to subsurface operations, it is required to find a microscale rock volume for which the homogenised property does not fluctuate when the size of the sample is increased; the Representative Elementary Volume (REV). Its determination usually comes at the cost of a large number of simulations, making it overall a computationally expensive process. Therefore, many scientific studies have been dedicated to optimising the process of finding REV. Using statistical numerical methods, it is shown that the fluctuation of the effective property corresponds overall to a cone-like shape convergence. We suggest determining the generic evolution law of the cone of convergence, which can be used to predict the size of the REV and the effective physical property. This study is based on simulations of Stokes flow through idealised microstructures from which the permeability is upscaled. By tracing and plotting the convergence of permeability for multiple samples, the full cone of convergence appears. The cone shows exponential growth and decay, converging towards the effective permeability of the microstructure. By fitting a log-normal distribution on the collected data points, we show that the generic evolution law of the cone of convergence can always be described with two parameters, independently of the porosity. We show that the determined law of the cone also applies to real microstructures, despite the presence of natural heterogeneities. The new method allows us to reduce the computational costs of finding all characteristics related to REV by simulating several subsamples rather than the full-sized sample, unlocking thereby high-resolution samples which are often too computationally expensive. The use of a statistical model provides quantification of the precision level we can obtain on the REV determination.</p></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"40 ","pages":"Article 100594"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the Representative Elementary Volume by determining the evolution law of the convergence cone\",\"authors\":\"Sijmen Zwarts,&nbsp;Martin Lesueur\",\"doi\":\"10.1016/j.gete.2024.100594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to characterise a rock formation prior to subsurface operations, it is required to find a microscale rock volume for which the homogenised property does not fluctuate when the size of the sample is increased; the Representative Elementary Volume (REV). Its determination usually comes at the cost of a large number of simulations, making it overall a computationally expensive process. Therefore, many scientific studies have been dedicated to optimising the process of finding REV. Using statistical numerical methods, it is shown that the fluctuation of the effective property corresponds overall to a cone-like shape convergence. We suggest determining the generic evolution law of the cone of convergence, which can be used to predict the size of the REV and the effective physical property. This study is based on simulations of Stokes flow through idealised microstructures from which the permeability is upscaled. By tracing and plotting the convergence of permeability for multiple samples, the full cone of convergence appears. The cone shows exponential growth and decay, converging towards the effective permeability of the microstructure. By fitting a log-normal distribution on the collected data points, we show that the generic evolution law of the cone of convergence can always be described with two parameters, independently of the porosity. We show that the determined law of the cone also applies to real microstructures, despite the presence of natural heterogeneities. The new method allows us to reduce the computational costs of finding all characteristics related to REV by simulating several subsamples rather than the full-sized sample, unlocking thereby high-resolution samples which are often too computationally expensive. The use of a statistical model provides quantification of the precision level we can obtain on the REV determination.</p></div>\",\"PeriodicalId\":56008,\"journal\":{\"name\":\"Geomechanics for Energy and the Environment\",\"volume\":\"40 \",\"pages\":\"Article 100594\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics for Energy and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352380824000613\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380824000613","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

为了在地下作业前确定岩层的特征,需要找到一个微尺度的岩石体积(即代表性基本体积,Representative Elementary Volume (REV)),当样本尺寸增大时,该体积的均匀特性不会发生波动。要确定该体积,通常需要进行大量的模拟,因此总体而言,计算成本很高。因此,许多科学研究都致力于优化寻找 REV 的过程。使用统计数值方法表明,有效性质的波动总体上对应于锥形收敛。我们建议确定收敛锥的一般演化规律,可用于预测 REV 的大小和有效物理特性。这项研究基于对流经理想化微结构的斯托克斯流的模拟,在此基础上放大了渗透率。通过追踪和绘制多个样本的渗透率收敛图,可以看到完整的收敛锥。锥体呈指数增长和衰减,向微结构的有效渗透率靠拢。通过对收集到的数据点进行对数正态分布拟合,我们发现收敛锥的一般演变规律总是可以用两个参数来描述,与孔隙率无关。我们证明,尽管存在天然异质性,但确定的锥体法则也适用于真实的微结构。新方法允许我们通过模拟多个子样本而不是全尺寸样本来降低寻找与 REV 相关的所有特征的计算成本,从而解锁通常计算成本过高的高分辨率样本。通过使用统计模型,我们可以量化 REV 测定的精确度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting the Representative Elementary Volume by determining the evolution law of the convergence cone

In order to characterise a rock formation prior to subsurface operations, it is required to find a microscale rock volume for which the homogenised property does not fluctuate when the size of the sample is increased; the Representative Elementary Volume (REV). Its determination usually comes at the cost of a large number of simulations, making it overall a computationally expensive process. Therefore, many scientific studies have been dedicated to optimising the process of finding REV. Using statistical numerical methods, it is shown that the fluctuation of the effective property corresponds overall to a cone-like shape convergence. We suggest determining the generic evolution law of the cone of convergence, which can be used to predict the size of the REV and the effective physical property. This study is based on simulations of Stokes flow through idealised microstructures from which the permeability is upscaled. By tracing and plotting the convergence of permeability for multiple samples, the full cone of convergence appears. The cone shows exponential growth and decay, converging towards the effective permeability of the microstructure. By fitting a log-normal distribution on the collected data points, we show that the generic evolution law of the cone of convergence can always be described with two parameters, independently of the porosity. We show that the determined law of the cone also applies to real microstructures, despite the presence of natural heterogeneities. The new method allows us to reduce the computational costs of finding all characteristics related to REV by simulating several subsamples rather than the full-sized sample, unlocking thereby high-resolution samples which are often too computationally expensive. The use of a statistical model provides quantification of the precision level we can obtain on the REV determination.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geomechanics for Energy and the Environment
Geomechanics for Energy and the Environment Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
11.80%
发文量
87
期刊介绍: The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources. The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.
期刊最新文献
Numerical modeling of hydro-mechanical processes during hydraulic testing of pre-existing fractures at the Grimsel Test Site, Switzerland A finite discrete element approach for modeling of desiccation fracturing around underground openings in Opalinus clay Comparison between new enhanced thermal response test methods for underground heat exchanger sizing Early and post-stage piping erosion in bentonite buffer materials exposed to groundwater inflow Dam impoundment near active faults in areas with high seismic potential: Case studies from Bisri and Mseilha dams, Lebanon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1