Ranjna Sirohi , Manish Kumar , V. Vivekanand , Amita Shakya , Ayon Tarafdar , Rickwinder Singh , Ankush D. Sawarkar , Anh Tuan Hoang , Ashok Pandey
{"title":"将生物炭融入厌氧消化:对不同原料和海藻生物炭的见解","authors":"Ranjna Sirohi , Manish Kumar , V. Vivekanand , Amita Shakya , Ayon Tarafdar , Rickwinder Singh , Ankush D. Sawarkar , Anh Tuan Hoang , Ashok Pandey","doi":"10.1016/j.eti.2024.103814","DOIUrl":null,"url":null,"abstract":"<div><p>This review article intends to report the advances in the production and application of biochar from macroalgae and microalgae and its utilization in anaerobic digestion (AD), aiming to achieve zero waste and promote a circular economy. Biochar, a carbon-rich material derived through pyrolysis or gasification, offers environmental and agricultural benefits due to its stability and porosity. By incorporating biochar into AD systems, improved process efficiency, enhanced microbial activity, and nutrient retention can be achieved. An integrated approach on its production and application can minimize biomass disposal impacts, generate renewable energy, and improve the soil and nutrient management. The use of macroalgae and microalgae for biochar production aligns with the sustainability principles, as these resources have high growth rates and there is no direct competition with the arable land. Thus, the focus of this article is to highlight the advances in algal biochar production with emphasis to the factors influencing biochar properties, structure, characterization, mechanism of biochar action, and the impact of biochar addition on AD. It also evaluates the economic and environmental benefits, featuring the role of this approach in achieving a zero-waste paradigm and supporting circular economy development.</p></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"36 ","pages":"Article 103814"},"PeriodicalIF":6.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352186424002906/pdfft?md5=b9995e14bd53991e055457b29623a204&pid=1-s2.0-S2352186424002906-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Integrating biochar in anaerobic digestion: Insights into diverse feedstocks and algal biochar\",\"authors\":\"Ranjna Sirohi , Manish Kumar , V. Vivekanand , Amita Shakya , Ayon Tarafdar , Rickwinder Singh , Ankush D. Sawarkar , Anh Tuan Hoang , Ashok Pandey\",\"doi\":\"10.1016/j.eti.2024.103814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This review article intends to report the advances in the production and application of biochar from macroalgae and microalgae and its utilization in anaerobic digestion (AD), aiming to achieve zero waste and promote a circular economy. Biochar, a carbon-rich material derived through pyrolysis or gasification, offers environmental and agricultural benefits due to its stability and porosity. By incorporating biochar into AD systems, improved process efficiency, enhanced microbial activity, and nutrient retention can be achieved. An integrated approach on its production and application can minimize biomass disposal impacts, generate renewable energy, and improve the soil and nutrient management. The use of macroalgae and microalgae for biochar production aligns with the sustainability principles, as these resources have high growth rates and there is no direct competition with the arable land. Thus, the focus of this article is to highlight the advances in algal biochar production with emphasis to the factors influencing biochar properties, structure, characterization, mechanism of biochar action, and the impact of biochar addition on AD. It also evaluates the economic and environmental benefits, featuring the role of this approach in achieving a zero-waste paradigm and supporting circular economy development.</p></div>\",\"PeriodicalId\":11725,\"journal\":{\"name\":\"Environmental Technology & Innovation\",\"volume\":\"36 \",\"pages\":\"Article 103814\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352186424002906/pdfft?md5=b9995e14bd53991e055457b29623a204&pid=1-s2.0-S2352186424002906-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology & Innovation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352186424002906\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology & Innovation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352186424002906","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Integrating biochar in anaerobic digestion: Insights into diverse feedstocks and algal biochar
This review article intends to report the advances in the production and application of biochar from macroalgae and microalgae and its utilization in anaerobic digestion (AD), aiming to achieve zero waste and promote a circular economy. Biochar, a carbon-rich material derived through pyrolysis or gasification, offers environmental and agricultural benefits due to its stability and porosity. By incorporating biochar into AD systems, improved process efficiency, enhanced microbial activity, and nutrient retention can be achieved. An integrated approach on its production and application can minimize biomass disposal impacts, generate renewable energy, and improve the soil and nutrient management. The use of macroalgae and microalgae for biochar production aligns with the sustainability principles, as these resources have high growth rates and there is no direct competition with the arable land. Thus, the focus of this article is to highlight the advances in algal biochar production with emphasis to the factors influencing biochar properties, structure, characterization, mechanism of biochar action, and the impact of biochar addition on AD. It also evaluates the economic and environmental benefits, featuring the role of this approach in achieving a zero-waste paradigm and supporting circular economy development.
期刊介绍:
Environmental Technology & Innovation adopts a challenge-oriented approach to solutions by integrating natural sciences to promote a sustainable future. The journal aims to foster the creation and development of innovative products, technologies, and ideas that enhance the environment, with impacts across soil, air, water, and food in rural and urban areas.
As a platform for disseminating scientific evidence for environmental protection and sustainable development, the journal emphasizes fundamental science, methodologies, tools, techniques, and policy considerations. It emphasizes the importance of science and technology in environmental benefits, including smarter, cleaner technologies for environmental protection, more efficient resource processing methods, and the evidence supporting their effectiveness.