Qi Sun , Jun Dong , Zehui Su , Xuanyun Huang , Xiaoning Gao , Kun Hu , Xiaoling Gong
{"title":"中华绒螯蟹卵巢磷脂酶 D 介导的低浓度溴氰菊酯毒性研究","authors":"Qi Sun , Jun Dong , Zehui Su , Xuanyun Huang , Xiaoning Gao , Kun Hu , Xiaoling Gong","doi":"10.1016/j.aquatox.2024.107090","DOIUrl":null,"url":null,"abstract":"<div><p>This study evaluates the impact of environmentally relevant, low-concentration deltamethrin exposure to <em>Eriocheir sinensis</em> ovaries. Our findings revealed that even at a concentration of 0.05 µg/L, deltamethrin exposure can induce significant ovarian toxicity through a 5-day exposure, with gradual amplification detected with time, demonstrating the toxicity amplification effect. Hematoxylin and Eosin staining revealed that low-concentration deltamethrin exposure produces pathological damage consistent with acute toxicity—yolk granules were dissolved and oocyte membranes were ruptured. High-throughput RNA-sequencing data indicated that the acute and low-concentration exposure groups involved completely different pathways and molecular functions, suggesting distinct mechanisms for their toxic effects. Following the identification of phospholipase D (PLD) as a potential core factor regulating the toxicity amplification effect of low concentration deltamethrin, we delved into subsequent mechanism studies using quantitative real-time PCR, immunofluorescence and enzyme-linked immunosorbent assay. Through the GnRH signaling pathway, increased PLD indirectly stimulates augmented estradiol secretion, subsequently inducing apoptosis by upregulating Cathepsin D, which can activate the key executioners of apoptosis—caspases (CASP3 and CASP7). In conclusion, low-concentration deltamethrin exposures can induce significant ovarian damage through apoptosis mediated by the upregulation of PLD in the ovaries of <em>Eriocheir sinensis</em> at environmentally relevant concentrations, which lays the preliminary theoretical groundwork for further elucidating the mechanism of toxicity amplification effect of pesticide exposure at low concentrations.</p></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"276 ","pages":"Article 107090"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on low concentration deltamethrin toxicity mediated by phospholipase D in Chinese mitten crab (Eriocheir sinensis) ovary\",\"authors\":\"Qi Sun , Jun Dong , Zehui Su , Xuanyun Huang , Xiaoning Gao , Kun Hu , Xiaoling Gong\",\"doi\":\"10.1016/j.aquatox.2024.107090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study evaluates the impact of environmentally relevant, low-concentration deltamethrin exposure to <em>Eriocheir sinensis</em> ovaries. Our findings revealed that even at a concentration of 0.05 µg/L, deltamethrin exposure can induce significant ovarian toxicity through a 5-day exposure, with gradual amplification detected with time, demonstrating the toxicity amplification effect. Hematoxylin and Eosin staining revealed that low-concentration deltamethrin exposure produces pathological damage consistent with acute toxicity—yolk granules were dissolved and oocyte membranes were ruptured. High-throughput RNA-sequencing data indicated that the acute and low-concentration exposure groups involved completely different pathways and molecular functions, suggesting distinct mechanisms for their toxic effects. Following the identification of phospholipase D (PLD) as a potential core factor regulating the toxicity amplification effect of low concentration deltamethrin, we delved into subsequent mechanism studies using quantitative real-time PCR, immunofluorescence and enzyme-linked immunosorbent assay. Through the GnRH signaling pathway, increased PLD indirectly stimulates augmented estradiol secretion, subsequently inducing apoptosis by upregulating Cathepsin D, which can activate the key executioners of apoptosis—caspases (CASP3 and CASP7). In conclusion, low-concentration deltamethrin exposures can induce significant ovarian damage through apoptosis mediated by the upregulation of PLD in the ovaries of <em>Eriocheir sinensis</em> at environmentally relevant concentrations, which lays the preliminary theoretical groundwork for further elucidating the mechanism of toxicity amplification effect of pesticide exposure at low concentrations.</p></div>\",\"PeriodicalId\":248,\"journal\":{\"name\":\"Aquatic Toxicology\",\"volume\":\"276 \",\"pages\":\"Article 107090\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Toxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166445X24002601\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X24002601","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Study on low concentration deltamethrin toxicity mediated by phospholipase D in Chinese mitten crab (Eriocheir sinensis) ovary
This study evaluates the impact of environmentally relevant, low-concentration deltamethrin exposure to Eriocheir sinensis ovaries. Our findings revealed that even at a concentration of 0.05 µg/L, deltamethrin exposure can induce significant ovarian toxicity through a 5-day exposure, with gradual amplification detected with time, demonstrating the toxicity amplification effect. Hematoxylin and Eosin staining revealed that low-concentration deltamethrin exposure produces pathological damage consistent with acute toxicity—yolk granules were dissolved and oocyte membranes were ruptured. High-throughput RNA-sequencing data indicated that the acute and low-concentration exposure groups involved completely different pathways and molecular functions, suggesting distinct mechanisms for their toxic effects. Following the identification of phospholipase D (PLD) as a potential core factor regulating the toxicity amplification effect of low concentration deltamethrin, we delved into subsequent mechanism studies using quantitative real-time PCR, immunofluorescence and enzyme-linked immunosorbent assay. Through the GnRH signaling pathway, increased PLD indirectly stimulates augmented estradiol secretion, subsequently inducing apoptosis by upregulating Cathepsin D, which can activate the key executioners of apoptosis—caspases (CASP3 and CASP7). In conclusion, low-concentration deltamethrin exposures can induce significant ovarian damage through apoptosis mediated by the upregulation of PLD in the ovaries of Eriocheir sinensis at environmentally relevant concentrations, which lays the preliminary theoretical groundwork for further elucidating the mechanism of toxicity amplification effect of pesticide exposure at low concentrations.
期刊介绍:
Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems.
Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants
The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.