氨暴露会影响斑马鱼(Danio rerio)幼体的骨矿化

IF 3.9 3区 环境科学与生态学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Comparative Biochemistry and Physiology C-toxicology & Pharmacology Pub Date : 2024-09-10 DOI:10.1016/j.cbpc.2024.110040
{"title":"氨暴露会影响斑马鱼(Danio rerio)幼体的骨矿化","authors":"","doi":"10.1016/j.cbpc.2024.110040","DOIUrl":null,"url":null,"abstract":"<div><p>Ammonia is a major pollutant of freshwater environments. Previous studies have indicated that ammonia exposure adversely affects the physiology of freshwater fish. However, its effect on bone mineralization in freshwater fish larvae remains unclear. In this study, zebrafish larvae were used as a model to investigate the effects of different ammonia levels (0, 2.5, 5, and 10 mM NH<sub>4</sub>Cl) on the survival rate, body length, and bone mineralization of fish. The survival rate of zebrafish embryos exposed to different NH<sub>4</sub>Cl concentrations for 8 days was not affected. In contrast, the body length and bone mineralization of zebrafish larvae at 8 days post fertilization (dpf) were significantly reduced at 5 and 10 mM NH<sub>4</sub>Cl exposure. Further investigations revealed that ammonia exposure decreased the mRNA expression of osteoblast-related genes and increased that of osteoclast-related genes. Additionally, exposure to 5 mM and 10 mM NH4Cl induced the production of reactive oxygen species (ROS). 10 mM—but not 5 mM—NH<sub>4</sub>Cl exposure reduced the calcium and phosphorus content in 8 dpf zebrafish larvae. In conclusion, ammonia exposure induces bone resorption, while decreasing the calcium and phosphorus content of the whole body and bone formation, resulting in impaired bone mineralization in fish larvae.</p></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ammonia exposure impairs bone mineralization in zebrafish (Danio rerio) larvae\",\"authors\":\"\",\"doi\":\"10.1016/j.cbpc.2024.110040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ammonia is a major pollutant of freshwater environments. Previous studies have indicated that ammonia exposure adversely affects the physiology of freshwater fish. However, its effect on bone mineralization in freshwater fish larvae remains unclear. In this study, zebrafish larvae were used as a model to investigate the effects of different ammonia levels (0, 2.5, 5, and 10 mM NH<sub>4</sub>Cl) on the survival rate, body length, and bone mineralization of fish. The survival rate of zebrafish embryos exposed to different NH<sub>4</sub>Cl concentrations for 8 days was not affected. In contrast, the body length and bone mineralization of zebrafish larvae at 8 days post fertilization (dpf) were significantly reduced at 5 and 10 mM NH<sub>4</sub>Cl exposure. Further investigations revealed that ammonia exposure decreased the mRNA expression of osteoblast-related genes and increased that of osteoclast-related genes. Additionally, exposure to 5 mM and 10 mM NH4Cl induced the production of reactive oxygen species (ROS). 10 mM—but not 5 mM—NH<sub>4</sub>Cl exposure reduced the calcium and phosphorus content in 8 dpf zebrafish larvae. In conclusion, ammonia exposure induces bone resorption, while decreasing the calcium and phosphorus content of the whole body and bone formation, resulting in impaired bone mineralization in fish larvae.</p></div>\",\"PeriodicalId\":10602,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532045624002084\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532045624002084","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

氨是淡水环境中的一种主要污染物。以往的研究表明,接触氨气会对淡水鱼的生理产生不利影响。然而,氨对淡水鱼幼体骨矿化的影响仍不清楚。本研究以斑马鱼幼体为模型,研究不同氨氮水平(0、2.5、5 和 10 mM NH4Cl)对鱼类存活率、体长和骨矿化的影响。暴露在不同浓度 NH4Cl 中 8 天的斑马鱼胚胎的存活率未受影响。相反,斑马鱼幼体在受精后 8 天(dpf)的体长和骨矿化度在暴露于 5 毫摩尔和 10 毫摩尔 NH4Cl 时显著降低。进一步研究发现,暴露于氨气会降低成骨细胞相关基因的 mRNA 表达,增加破骨细胞相关基因的 mRNA 表达。此外,暴露于 5 mM 和 10 mM NH4Cl 会诱导活性氧(ROS)的产生。暴露于 10 mM 而非 5 mM NH4Cl 会降低斑马鱼 8 dpf 幼体中的钙和磷含量。总之,暴露于氨诱导骨吸收,同时降低全身的钙和磷含量以及骨形成,导致鱼类幼体骨矿化受损。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ammonia exposure impairs bone mineralization in zebrafish (Danio rerio) larvae

Ammonia is a major pollutant of freshwater environments. Previous studies have indicated that ammonia exposure adversely affects the physiology of freshwater fish. However, its effect on bone mineralization in freshwater fish larvae remains unclear. In this study, zebrafish larvae were used as a model to investigate the effects of different ammonia levels (0, 2.5, 5, and 10 mM NH4Cl) on the survival rate, body length, and bone mineralization of fish. The survival rate of zebrafish embryos exposed to different NH4Cl concentrations for 8 days was not affected. In contrast, the body length and bone mineralization of zebrafish larvae at 8 days post fertilization (dpf) were significantly reduced at 5 and 10 mM NH4Cl exposure. Further investigations revealed that ammonia exposure decreased the mRNA expression of osteoblast-related genes and increased that of osteoclast-related genes. Additionally, exposure to 5 mM and 10 mM NH4Cl induced the production of reactive oxygen species (ROS). 10 mM—but not 5 mM—NH4Cl exposure reduced the calcium and phosphorus content in 8 dpf zebrafish larvae. In conclusion, ammonia exposure induces bone resorption, while decreasing the calcium and phosphorus content of the whole body and bone formation, resulting in impaired bone mineralization in fish larvae.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
5.10%
发文量
206
审稿时长
30 days
期刊介绍: Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.
期刊最新文献
Assessing antioxidant responses in C6 and U-87 MG cell lines exposed to high copper levels. Deficiency of PvDRAM2 increased the nitrite sensitivity of Pacific white shrimp (Penaeus vannamei) by inhibiting autophagy. Effect of lead on photosynthetic pigments, antioxidant responses, metabolomics, thalli morphology and cell ultrastructure of Iridaea cordata (Rhodophyta) from Antarctica Tire rubber-derived contaminant 6PPD had the potential to induce metabolism disorder in early developmental stage of zebrafish Effects of water immersion on immune, intestinal flora and metabolome of Chinese mitten crab (Eriocheir sinensis) after air exposure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1