环境相关浓度的阿维菌素会损害斑马鱼幼体的骨骼发育

IF 3.9 3区 环境科学与生态学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Comparative Biochemistry and Physiology C-toxicology & Pharmacology Pub Date : 2024-09-14 DOI:10.1016/j.cbpc.2024.110039
{"title":"环境相关浓度的阿维菌素会损害斑马鱼幼体的骨骼发育","authors":"","doi":"10.1016/j.cbpc.2024.110039","DOIUrl":null,"url":null,"abstract":"<div><p>Abamectin (ABM) is a widely used pesticide in agriculture and veterinary medicine, which primarily acts by disrupting the neurological physiology of pests, leading to their paralysis and death. Its extensive application has resulted in contamination of many natural water bodies. While the adverse effects of ABM on the growth and development of non-target organisms are well documented, its impact on bone development remains inadequately studied. The present study aimed to investigate the effects of environmentally relevant concentrations of ABM (1, 5, 25 μg/L) on early bone development in zebrafish. Our results indicated that ABM significantly affected both cartilage and bone development of zebrafish larvae, accompanied by dose-dependent increase in deformity and mortality rates, as well as exacerbated apoptosis. ABM exposure led to deformities in the ceratobranchial (cb) and hyosymplectic (hs), accompanied by significant increases in the length of the palatoquadrate (pq). Furthermore, significant decreases in the CH-CH angle, Meckel's-Meckel's angle, and Meckel's-PQ angle were noted. Even at the safe concentration of 5 μg/L (1/10 of the 96 h <em>LC</em><sub>50</sub>), ABM delayed the process of bone mineralization in zebrafish larvae. Real-time fluorescent quantitative PCR results demonstrated that ABM induced differential gene expression associated with cartilage and bone development in zebrafish. Thus, this study provides preliminary insights into the effects and molecular mechanisms underlying ABM's impact on the bone development of zebrafish larvae and offers new evidence for a better understanding of its toxicity.</p></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abamectin at environmentally relevant concentrations impairs bone development in zebrafish larvae\",\"authors\":\"\",\"doi\":\"10.1016/j.cbpc.2024.110039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Abamectin (ABM) is a widely used pesticide in agriculture and veterinary medicine, which primarily acts by disrupting the neurological physiology of pests, leading to their paralysis and death. Its extensive application has resulted in contamination of many natural water bodies. While the adverse effects of ABM on the growth and development of non-target organisms are well documented, its impact on bone development remains inadequately studied. The present study aimed to investigate the effects of environmentally relevant concentrations of ABM (1, 5, 25 μg/L) on early bone development in zebrafish. Our results indicated that ABM significantly affected both cartilage and bone development of zebrafish larvae, accompanied by dose-dependent increase in deformity and mortality rates, as well as exacerbated apoptosis. ABM exposure led to deformities in the ceratobranchial (cb) and hyosymplectic (hs), accompanied by significant increases in the length of the palatoquadrate (pq). Furthermore, significant decreases in the CH-CH angle, Meckel's-Meckel's angle, and Meckel's-PQ angle were noted. Even at the safe concentration of 5 μg/L (1/10 of the 96 h <em>LC</em><sub>50</sub>), ABM delayed the process of bone mineralization in zebrafish larvae. Real-time fluorescent quantitative PCR results demonstrated that ABM induced differential gene expression associated with cartilage and bone development in zebrafish. Thus, this study provides preliminary insights into the effects and molecular mechanisms underlying ABM's impact on the bone development of zebrafish larvae and offers new evidence for a better understanding of its toxicity.</p></div>\",\"PeriodicalId\":10602,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532045624002072\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532045624002072","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

阿维菌素(ABM)是一种广泛应用于农业和兽医领域的杀虫剂,其主要作用是破坏害虫的神经生理机能,导致害虫瘫痪和死亡。它的广泛应用已导致许多自然水体受到污染。虽然 ABM 对非目标生物的生长和发育产生的不利影响已被充分记录,但其对骨骼发育的影响仍未得到充分研究。本研究旨在探讨环境相关浓度的 ABM(1、5、25 μg/L)对斑马鱼早期骨骼发育的影响。结果表明,ABM 对斑马鱼幼体的软骨和骨骼发育均有明显影响,同时会导致畸形率和死亡率呈剂量依赖性增加,并加剧细胞凋亡。暴露于 ABM 会导致颚骨(cb)和腮骨(hs)畸形,同时腭舟骨(pq)的长度显著增加。此外,CH-CH 角、Meckel's-Meckel's 角和 Meckel's-PQ 角也明显减小。即使在 5 μg/L(96 小时半数致死浓度的 1/10)的安全浓度下,ABM 也能延迟斑马鱼幼体的骨矿化过程。实时荧光定量 PCR 结果表明,ABM 可诱导斑马鱼体内与软骨和骨骼发育相关的不同基因表达。因此,本研究初步揭示了 ABM 影响斑马鱼幼体骨骼发育的效应和分子机制,为更好地了解其毒性提供了新的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Abamectin at environmentally relevant concentrations impairs bone development in zebrafish larvae

Abamectin (ABM) is a widely used pesticide in agriculture and veterinary medicine, which primarily acts by disrupting the neurological physiology of pests, leading to their paralysis and death. Its extensive application has resulted in contamination of many natural water bodies. While the adverse effects of ABM on the growth and development of non-target organisms are well documented, its impact on bone development remains inadequately studied. The present study aimed to investigate the effects of environmentally relevant concentrations of ABM (1, 5, 25 μg/L) on early bone development in zebrafish. Our results indicated that ABM significantly affected both cartilage and bone development of zebrafish larvae, accompanied by dose-dependent increase in deformity and mortality rates, as well as exacerbated apoptosis. ABM exposure led to deformities in the ceratobranchial (cb) and hyosymplectic (hs), accompanied by significant increases in the length of the palatoquadrate (pq). Furthermore, significant decreases in the CH-CH angle, Meckel's-Meckel's angle, and Meckel's-PQ angle were noted. Even at the safe concentration of 5 μg/L (1/10 of the 96 h LC50), ABM delayed the process of bone mineralization in zebrafish larvae. Real-time fluorescent quantitative PCR results demonstrated that ABM induced differential gene expression associated with cartilage and bone development in zebrafish. Thus, this study provides preliminary insights into the effects and molecular mechanisms underlying ABM's impact on the bone development of zebrafish larvae and offers new evidence for a better understanding of its toxicity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
5.10%
发文量
206
审稿时长
30 days
期刊介绍: Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.
期刊最新文献
Assessing antioxidant responses in C6 and U-87 MG cell lines exposed to high copper levels. Deficiency of PvDRAM2 increased the nitrite sensitivity of Pacific white shrimp (Penaeus vannamei) by inhibiting autophagy. Effect of lead on photosynthetic pigments, antioxidant responses, metabolomics, thalli morphology and cell ultrastructure of Iridaea cordata (Rhodophyta) from Antarctica Tire rubber-derived contaminant 6PPD had the potential to induce metabolism disorder in early developmental stage of zebrafish Effects of water immersion on immune, intestinal flora and metabolome of Chinese mitten crab (Eriocheir sinensis) after air exposure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1