微结构和湿热效应对 CNT 增强纤维聚合物复合材料振动的多尺度建模

IF 4.3 2区 工程技术 Q1 ACOUSTICS Journal of Sound and Vibration Pub Date : 2024-09-07 DOI:10.1016/j.jsv.2024.118733
{"title":"微结构和湿热效应对 CNT 增强纤维聚合物复合材料振动的多尺度建模","authors":"","doi":"10.1016/j.jsv.2024.118733","DOIUrl":null,"url":null,"abstract":"<div><p>This work presents a multi-scale analytical and computational approach designed to predict the hygro-thermo-mechanical vibrational response of laminated composite structures reinforced with multi-walled carbon nanotubes (MWCNTs). Employing the modified Halpin-Tsai model, this study estimates the elastic properties of the MWCNT-enhanced epoxy matrix, incorporating the impacts of MWCNT agglomeration, orientation, waviness, and size-dependent characteristics. Additionally, the Chamis micromechanical model is utilized to ascertain the independent elastic constants of the nanocomposite lamina, considering environmental variables such as temperature and humidity. Subsequent analysis involves the determination of natural frequencies for both pristine and MWCNT-integrated laminated composite structures via the Finite Element Method (FEM), addressing various design-related parameters. This investigation further explores the macroscopic influences of MWCNT incorporation, boundary condition and layup scheme, along with the temperature, moisture content, and the nanoscopic impact of MWCNTs on the natural frequencies of laminated composite plates. The obtained results of the proposed multiscale modeling are compared with experimental and theoretical observations. It has been demonstrated that while the incorporation of carbon nanotubes (CNTs) can enhance the mechanical properties of nanocomposite laminae, the natural frequencies of these nanocomposite plates are adversely affected by variations in temperature and moisture content. Furthermore, the findings indicate that the microstructural characteristics of CNTs play a crucial role in determining the efficacy of the reinforcement phenomenon. The developed multi-scale methodological framework offers significant potential for the design and optimization of MWCNT-based composite structures across diverse industries, including automotive and aerospace sectors.</p></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale modeling of microstructural and hygrothermal effects on vibrations of CNT-enhanced fiber-reinforced polymer composites\",\"authors\":\"\",\"doi\":\"10.1016/j.jsv.2024.118733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work presents a multi-scale analytical and computational approach designed to predict the hygro-thermo-mechanical vibrational response of laminated composite structures reinforced with multi-walled carbon nanotubes (MWCNTs). Employing the modified Halpin-Tsai model, this study estimates the elastic properties of the MWCNT-enhanced epoxy matrix, incorporating the impacts of MWCNT agglomeration, orientation, waviness, and size-dependent characteristics. Additionally, the Chamis micromechanical model is utilized to ascertain the independent elastic constants of the nanocomposite lamina, considering environmental variables such as temperature and humidity. Subsequent analysis involves the determination of natural frequencies for both pristine and MWCNT-integrated laminated composite structures via the Finite Element Method (FEM), addressing various design-related parameters. This investigation further explores the macroscopic influences of MWCNT incorporation, boundary condition and layup scheme, along with the temperature, moisture content, and the nanoscopic impact of MWCNTs on the natural frequencies of laminated composite plates. The obtained results of the proposed multiscale modeling are compared with experimental and theoretical observations. It has been demonstrated that while the incorporation of carbon nanotubes (CNTs) can enhance the mechanical properties of nanocomposite laminae, the natural frequencies of these nanocomposite plates are adversely affected by variations in temperature and moisture content. Furthermore, the findings indicate that the microstructural characteristics of CNTs play a crucial role in determining the efficacy of the reinforcement phenomenon. The developed multi-scale methodological framework offers significant potential for the design and optimization of MWCNT-based composite structures across diverse industries, including automotive and aerospace sectors.</p></div>\",\"PeriodicalId\":17233,\"journal\":{\"name\":\"Journal of Sound and Vibration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sound and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022460X24004954\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X24004954","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种多尺度分析和计算方法,旨在预测使用多壁碳纳米管 (MWCNT) 增强的层压复合结构的湿热机械振动响应。本研究采用改进的 Halpin-Tsai 模型,估算了 MWCNT 增强环氧基体的弹性特性,并将 MWCNT 的团聚、取向、挥发性和尺寸相关特性的影响纳入其中。此外,考虑到温度和湿度等环境变量,利用 Chamis 微机械模型确定纳米复合材料薄层的独立弹性常数。随后的分析包括通过有限元法 (FEM) 确定原始和集成了 MWCNT 的层状复合结构的固有频率,并解决各种设计相关参数。这项研究进一步探讨了 MWCNT 的加入、边界条件和铺层方案的宏观影响,以及温度、含水量和 MWCNT 的纳米影响对层压复合板固有频率的影响。将所提出的多尺度建模结果与实验和理论观测结果进行了比较。结果表明,虽然加入碳纳米管(CNTs)可以提高纳米复合材料层压板的机械性能,但温度和含水量的变化会对这些纳米复合材料板的固有频率产生不利影响。此外,研究结果表明,碳纳米管的微观结构特征在决定增强现象的功效方面起着至关重要的作用。所开发的多尺度方法框架为设计和优化基于 MWCNT 的复合材料结构提供了巨大潜力,适用于汽车和航空航天等不同行业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiscale modeling of microstructural and hygrothermal effects on vibrations of CNT-enhanced fiber-reinforced polymer composites

This work presents a multi-scale analytical and computational approach designed to predict the hygro-thermo-mechanical vibrational response of laminated composite structures reinforced with multi-walled carbon nanotubes (MWCNTs). Employing the modified Halpin-Tsai model, this study estimates the elastic properties of the MWCNT-enhanced epoxy matrix, incorporating the impacts of MWCNT agglomeration, orientation, waviness, and size-dependent characteristics. Additionally, the Chamis micromechanical model is utilized to ascertain the independent elastic constants of the nanocomposite lamina, considering environmental variables such as temperature and humidity. Subsequent analysis involves the determination of natural frequencies for both pristine and MWCNT-integrated laminated composite structures via the Finite Element Method (FEM), addressing various design-related parameters. This investigation further explores the macroscopic influences of MWCNT incorporation, boundary condition and layup scheme, along with the temperature, moisture content, and the nanoscopic impact of MWCNTs on the natural frequencies of laminated composite plates. The obtained results of the proposed multiscale modeling are compared with experimental and theoretical observations. It has been demonstrated that while the incorporation of carbon nanotubes (CNTs) can enhance the mechanical properties of nanocomposite laminae, the natural frequencies of these nanocomposite plates are adversely affected by variations in temperature and moisture content. Furthermore, the findings indicate that the microstructural characteristics of CNTs play a crucial role in determining the efficacy of the reinforcement phenomenon. The developed multi-scale methodological framework offers significant potential for the design and optimization of MWCNT-based composite structures across diverse industries, including automotive and aerospace sectors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sound and Vibration
Journal of Sound and Vibration 工程技术-工程:机械
CiteScore
9.10
自引率
10.60%
发文量
551
审稿时长
69 days
期刊介绍: The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application. JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.
期刊最新文献
A new contact force model for revolute joints considering elastic layer characteristics effects Robustness evaluation of acceleration-based early rub detection methodologies with real fluid-induced noise Extraction and characteristic analysis of the nonlinear acoustic impedance of circular orifice in the presence of bias flow A vibro-impact remote-controlled capsule in millimeter scale: Design, modeling, experimental validation and dynamic response Atypical second harmonic A0 mode Lamb waves in non-uniform plates for local incipient damage monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1