Yuanlin Chen , Huan Li , Shangyi Gu , Scott A. Whattam , Mingchun Song , Bingqian Hu , Liuan Duan , Chaoyang Zheng , Bijuan Wu
{"title":"溪洛渡碳酸盐硫化物脉型金矿床:华北胶东黄金大省的一个独特矿床","authors":"Yuanlin Chen , Huan Li , Shangyi Gu , Scott A. Whattam , Mingchun Song , Bingqian Hu , Liuan Duan , Chaoyang Zheng , Bijuan Wu","doi":"10.1016/j.oregeorev.2024.106232","DOIUrl":null,"url":null,"abstract":"<div><p>The Xilaokou gold deposit with ca. 50 t of gold reserve @ 2.7 g/t represents a novel type (carbonate-sulfide vein type) of gold mineralization within the Jiaodong gold province. However, its mineralization age and metallogenic mechanism remain poorly constrained, hindering a comprehensive understanding of the ore-forming processes in the Jiaodong gold province. In this study, we employ <em>syn</em>-ore stage hydrothermal monazite in situ U-Pb geochronology to determine the ore-forming age of the Xilaokou gold deposit. Additionally, we conduct in situ LA-(MC)-ICP-MS elemental mapping and sulfur isotope analysis in ore-related pyrite to unravel the sulfur source(s) and provide new insights into the ore-forming processes of the Xilaokou gold deposit. Our findings reveal the following key points: (1) U-Pb dating of hydrothermal monazite in Au-bearing pyrite yields an ore-forming age of<!--> <!-->119.9 ± 3.0 Ma. This age is consistent with the mineralization ages (around 120 ± 5 Ma) of other gold deposits in the region, including Liaoshang-, Jiaojia-, and Linglong-type deposits. (2) Gold in pyrite primarily occurs as micro-grains (5–20 μm) within pyrite fissures associated with sphalerite and galena. (3) Elemental mapping and sulfur isotope analysis indicate that major Au mineralization is linked to elevated concentrations of As, Sb, and Tl, along with heavy sulfur isotope values (δ<sup>34</sup>S∼24.7 ‰). (4) Early-stage Au mineralization is characterized by enrichment of As, Cu, and Bi, with normal sulfur isotopic composition (δ<sup>34</sup>S∼8 ‰). We propose that the carbonate-sulfide vein type gold deposits represented by the Liaoshang and Xilaokou gold deposits in the Jiaodong gold province are genetically linked to quartz-sulfide vein and disseminated type deposits. The major ore-forming stage involved the addition of S and Au from a metamorphic massif at slightly lower temperatures. These findings highlight a new exploration direction within the North China Craton. In summary, the Xilaokou gold deposit provides valuable insights into gold mineralization processes in Jiaodong, emphasizing the importance of considering diverse deposit types and their genetic relationships in the region.</p></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":"173 ","pages":"Article 106232"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169136824003652/pdfft?md5=73b6aae1f7e0390c784aafa753fda16a&pid=1-s2.0-S0169136824003652-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The Xilaokou carbonate-sulfide vein type gold deposit: A distinct mineralization in the giant Jiaodong gold province, North China\",\"authors\":\"Yuanlin Chen , Huan Li , Shangyi Gu , Scott A. Whattam , Mingchun Song , Bingqian Hu , Liuan Duan , Chaoyang Zheng , Bijuan Wu\",\"doi\":\"10.1016/j.oregeorev.2024.106232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Xilaokou gold deposit with ca. 50 t of gold reserve @ 2.7 g/t represents a novel type (carbonate-sulfide vein type) of gold mineralization within the Jiaodong gold province. However, its mineralization age and metallogenic mechanism remain poorly constrained, hindering a comprehensive understanding of the ore-forming processes in the Jiaodong gold province. In this study, we employ <em>syn</em>-ore stage hydrothermal monazite in situ U-Pb geochronology to determine the ore-forming age of the Xilaokou gold deposit. Additionally, we conduct in situ LA-(MC)-ICP-MS elemental mapping and sulfur isotope analysis in ore-related pyrite to unravel the sulfur source(s) and provide new insights into the ore-forming processes of the Xilaokou gold deposit. Our findings reveal the following key points: (1) U-Pb dating of hydrothermal monazite in Au-bearing pyrite yields an ore-forming age of<!--> <!-->119.9 ± 3.0 Ma. This age is consistent with the mineralization ages (around 120 ± 5 Ma) of other gold deposits in the region, including Liaoshang-, Jiaojia-, and Linglong-type deposits. (2) Gold in pyrite primarily occurs as micro-grains (5–20 μm) within pyrite fissures associated with sphalerite and galena. (3) Elemental mapping and sulfur isotope analysis indicate that major Au mineralization is linked to elevated concentrations of As, Sb, and Tl, along with heavy sulfur isotope values (δ<sup>34</sup>S∼24.7 ‰). (4) Early-stage Au mineralization is characterized by enrichment of As, Cu, and Bi, with normal sulfur isotopic composition (δ<sup>34</sup>S∼8 ‰). We propose that the carbonate-sulfide vein type gold deposits represented by the Liaoshang and Xilaokou gold deposits in the Jiaodong gold province are genetically linked to quartz-sulfide vein and disseminated type deposits. The major ore-forming stage involved the addition of S and Au from a metamorphic massif at slightly lower temperatures. These findings highlight a new exploration direction within the North China Craton. In summary, the Xilaokou gold deposit provides valuable insights into gold mineralization processes in Jiaodong, emphasizing the importance of considering diverse deposit types and their genetic relationships in the region.</p></div>\",\"PeriodicalId\":19644,\"journal\":{\"name\":\"Ore Geology Reviews\",\"volume\":\"173 \",\"pages\":\"Article 106232\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0169136824003652/pdfft?md5=73b6aae1f7e0390c784aafa753fda16a&pid=1-s2.0-S0169136824003652-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ore Geology Reviews\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169136824003652\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ore Geology Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169136824003652","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
The Xilaokou carbonate-sulfide vein type gold deposit: A distinct mineralization in the giant Jiaodong gold province, North China
The Xilaokou gold deposit with ca. 50 t of gold reserve @ 2.7 g/t represents a novel type (carbonate-sulfide vein type) of gold mineralization within the Jiaodong gold province. However, its mineralization age and metallogenic mechanism remain poorly constrained, hindering a comprehensive understanding of the ore-forming processes in the Jiaodong gold province. In this study, we employ syn-ore stage hydrothermal monazite in situ U-Pb geochronology to determine the ore-forming age of the Xilaokou gold deposit. Additionally, we conduct in situ LA-(MC)-ICP-MS elemental mapping and sulfur isotope analysis in ore-related pyrite to unravel the sulfur source(s) and provide new insights into the ore-forming processes of the Xilaokou gold deposit. Our findings reveal the following key points: (1) U-Pb dating of hydrothermal monazite in Au-bearing pyrite yields an ore-forming age of 119.9 ± 3.0 Ma. This age is consistent with the mineralization ages (around 120 ± 5 Ma) of other gold deposits in the region, including Liaoshang-, Jiaojia-, and Linglong-type deposits. (2) Gold in pyrite primarily occurs as micro-grains (5–20 μm) within pyrite fissures associated with sphalerite and galena. (3) Elemental mapping and sulfur isotope analysis indicate that major Au mineralization is linked to elevated concentrations of As, Sb, and Tl, along with heavy sulfur isotope values (δ34S∼24.7 ‰). (4) Early-stage Au mineralization is characterized by enrichment of As, Cu, and Bi, with normal sulfur isotopic composition (δ34S∼8 ‰). We propose that the carbonate-sulfide vein type gold deposits represented by the Liaoshang and Xilaokou gold deposits in the Jiaodong gold province are genetically linked to quartz-sulfide vein and disseminated type deposits. The major ore-forming stage involved the addition of S and Au from a metamorphic massif at slightly lower temperatures. These findings highlight a new exploration direction within the North China Craton. In summary, the Xilaokou gold deposit provides valuable insights into gold mineralization processes in Jiaodong, emphasizing the importance of considering diverse deposit types and their genetic relationships in the region.
期刊介绍:
Ore Geology Reviews aims to familiarize all earth scientists with recent advances in a number of interconnected disciplines related to the study of, and search for, ore deposits. The reviews range from brief to longer contributions, but the journal preferentially publishes manuscripts that fill the niche between the commonly shorter journal articles and the comprehensive book coverages, and thus has a special appeal to many authors and readers.