针对多片叠层壳的高效等距屈曲优化框架:利用三维实体元素、层压参数和惩罚方法

IF 3.9 2区 工程技术 Q1 ENGINEERING, CIVIL Structures Pub Date : 2024-09-14 DOI:10.1016/j.istruc.2024.107212
{"title":"针对多片叠层壳的高效等距屈曲优化框架:利用三维实体元素、层压参数和惩罚方法","authors":"","doi":"10.1016/j.istruc.2024.107212","DOIUrl":null,"url":null,"abstract":"<div><p>Buckling is a common failure mode of laminated shell structures during service, and isogeometric analysis methods are highly suitable for the buckling analysis due to their accurate geometric modeling capability and high-order continuity. However, the isogeometric buckling analysis for a multi-patch structure and its optimal design still face challenges in computational efficiency. To address this issue, this paper proposes an integrated framework for the buckling optimization of multi-patch laminated shells, which leverages 3D solid elements, lamination parameters, and the penalty coupling method. Solid-shell elements have advantages in shell analysis due to their simplicity, absence of rotational degrees of freedom, and adaptive layering in the thickness direction. Lamination parameters simplify the optimization of fiber orientations in laminated shells by condensing the design variable space and improving the convexity of the optimization problem. The penalty method can handle the coupling in multiple patches at a relatively low cost. Nevertheless, lamination parameters are rarely applied to the case of solid-shell elements. In addition, despite using lamination parameters, the number of design variables for multi-patch structures remains significantly large. To tackle these issues, this study derives the solid-shell formulation in lamination parameters and the sensitivity analysis formulae in the reverse mode. Experiment validation is conducted to assess the accuracy of the proposed method based on lamination parameters with solid elements, the feasibility of the multi-patch optimization model, and the computational efficiency of optimization sensitivity based on the reverse mode compared to the forward counterpart common in the literature.</p></div>","PeriodicalId":48642,"journal":{"name":"Structures","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient isogeometric buckling optimization framework for multi-patch laminated shells: Leveraging 3D solid elements, lamination parameters and penalty method\",\"authors\":\"\",\"doi\":\"10.1016/j.istruc.2024.107212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Buckling is a common failure mode of laminated shell structures during service, and isogeometric analysis methods are highly suitable for the buckling analysis due to their accurate geometric modeling capability and high-order continuity. However, the isogeometric buckling analysis for a multi-patch structure and its optimal design still face challenges in computational efficiency. To address this issue, this paper proposes an integrated framework for the buckling optimization of multi-patch laminated shells, which leverages 3D solid elements, lamination parameters, and the penalty coupling method. Solid-shell elements have advantages in shell analysis due to their simplicity, absence of rotational degrees of freedom, and adaptive layering in the thickness direction. Lamination parameters simplify the optimization of fiber orientations in laminated shells by condensing the design variable space and improving the convexity of the optimization problem. The penalty method can handle the coupling in multiple patches at a relatively low cost. Nevertheless, lamination parameters are rarely applied to the case of solid-shell elements. In addition, despite using lamination parameters, the number of design variables for multi-patch structures remains significantly large. To tackle these issues, this study derives the solid-shell formulation in lamination parameters and the sensitivity analysis formulae in the reverse mode. Experiment validation is conducted to assess the accuracy of the proposed method based on lamination parameters with solid elements, the feasibility of the multi-patch optimization model, and the computational efficiency of optimization sensitivity based on the reverse mode compared to the forward counterpart common in the literature.</p></div>\",\"PeriodicalId\":48642,\"journal\":{\"name\":\"Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S235201242401364X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235201242401364X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

屈曲是层状壳体结构在使用过程中常见的失效模式,等几何分析方法因其精确的几何建模能力和高阶连续性而非常适合屈曲分析。然而,多片式结构的等距屈曲分析及其优化设计在计算效率方面仍面临挑战。为解决这一问题,本文提出了一种利用三维实体元素、层叠参数和惩罚耦合方法进行多补丁层叠壳屈曲优化的集成框架。实壳元素因其简单性、无旋转自由度和厚度方向上的自适应分层而在壳体分析中具有优势。层叠参数通过压缩设计变量空间和改善优化问题的凸性,简化了层叠壳体中纤维方向的优化。惩罚法能以相对较低的成本处理多个斑块中的耦合。然而,层叠参数很少应用于实壳元素。此外,尽管使用了层叠参数,多补丁结构的设计变量数量仍然很大。为解决这些问题,本研究导出了层叠参数中的固壳公式和反向模式中的灵敏度分析公式。通过实验验证,评估了所提出的基于层叠参数与实体元素的方法的准确性、多补丁优化模型的可行性,以及基于反向模式的优化灵敏度与文献中常见的正向模式相比的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An efficient isogeometric buckling optimization framework for multi-patch laminated shells: Leveraging 3D solid elements, lamination parameters and penalty method

Buckling is a common failure mode of laminated shell structures during service, and isogeometric analysis methods are highly suitable for the buckling analysis due to their accurate geometric modeling capability and high-order continuity. However, the isogeometric buckling analysis for a multi-patch structure and its optimal design still face challenges in computational efficiency. To address this issue, this paper proposes an integrated framework for the buckling optimization of multi-patch laminated shells, which leverages 3D solid elements, lamination parameters, and the penalty coupling method. Solid-shell elements have advantages in shell analysis due to their simplicity, absence of rotational degrees of freedom, and adaptive layering in the thickness direction. Lamination parameters simplify the optimization of fiber orientations in laminated shells by condensing the design variable space and improving the convexity of the optimization problem. The penalty method can handle the coupling in multiple patches at a relatively low cost. Nevertheless, lamination parameters are rarely applied to the case of solid-shell elements. In addition, despite using lamination parameters, the number of design variables for multi-patch structures remains significantly large. To tackle these issues, this study derives the solid-shell formulation in lamination parameters and the sensitivity analysis formulae in the reverse mode. Experiment validation is conducted to assess the accuracy of the proposed method based on lamination parameters with solid elements, the feasibility of the multi-patch optimization model, and the computational efficiency of optimization sensitivity based on the reverse mode compared to the forward counterpart common in the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structures
Structures Engineering-Architecture
CiteScore
5.70
自引率
17.10%
发文量
1187
期刊介绍: Structures aims to publish internationally-leading research across the full breadth of structural engineering. Papers for Structures are particularly welcome in which high-quality research will benefit from wide readership of academics and practitioners such that not only high citation rates but also tangible industrial-related pathways to impact are achieved.
期刊最新文献
Experimental study on acoustic emission damage in precast reinforced concrete interior joints containing disc springs Experimental and numerical studies on the mechanical behavior of metallic connecting pieces in point-supported glass facades A new cross section hypothesis-based approach for quantifying deployment characteristics of deployable inflatable structures Numerical study on seismic performance of a prefabricated subway station considering the influence of construction process Investigation on shear performance of sliding-type rapid segmental joints for shield tunnels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1