采用超高性能混凝土现浇模板的钢筋混凝土梁的挠曲行为和数值模拟

IF 3.9 2区 工程技术 Q1 ENGINEERING, CIVIL Structures Pub Date : 2024-09-13 DOI:10.1016/j.istruc.2024.107254
{"title":"采用超高性能混凝土现浇模板的钢筋混凝土梁的挠曲行为和数值模拟","authors":"","doi":"10.1016/j.istruc.2024.107254","DOIUrl":null,"url":null,"abstract":"<div><p>To overcome the shortcomings of traditional concrete structures such as long construction cycle, high construction cost and poor durability, seven composite beams with a UHPC stay-in-place formwork (UCB) and one reinforced concrete (RC) beam were designed. An experimental study was conducted to investigate the flexural behavior of composite beams under the static load. The research parameters include formwork thickness, reinforcement rate, and formwork surface treatment. The results revealed that roughening the surface of UHPC formwork has a positive impact on enhancing the integrity of composite beams. The utilization of UHPC stay-in-place formwork can effectively improve the stiffness, cracking load, and peak load of members. Compared with that of the RC beam, the cracking load and peak load of composite beams increased by 63 % ∼ 103 % and 6 % ∼ 15 %, respectively, and the yielding stiffness increased by 23 % ∼ 41 %. Different from the RC beam, new cracks occurred on one side of the initial crack's end and continued to extend upwards rather than along the original crack. The existence of a significant quantity of tiny cracks in composite beams effectively slowed down the increase in the width of pre-existing cracks in the early stage of loading. Due to the multi-crack pattern exhibited by the UHPC formwork, the strain concentration of the steel bars was effectively mitigated. When subjected to the same load level, the strain of the longitudinal steel bars in composite beams was smaller than that of the RC beam. The formula for calculating the flexural bearing capacity of composite beams is established through theoretical analysis. In addition, the numerical model of the composite beam is established by the finite element method (FEM). The influence of the contact method of the UHPC-NC interface on the flexural performance of the composite beam is explored. The supplementary analysis of the parametric study of the reinforcement rate and the UHPC formwork thickness is carried out. When using ABAQUS for the numerical analysis of the composite beam, it is appropriate to adopt the cohesion model or the Tie model for the UHPC-NC interface, and it is not appropriate to use the Coulomb friction model.</p></div>","PeriodicalId":48642,"journal":{"name":"Structures","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexural behavior and numerical simulation of reinforced concrete beams with a UHPC stay-in-place formwork\",\"authors\":\"\",\"doi\":\"10.1016/j.istruc.2024.107254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To overcome the shortcomings of traditional concrete structures such as long construction cycle, high construction cost and poor durability, seven composite beams with a UHPC stay-in-place formwork (UCB) and one reinforced concrete (RC) beam were designed. An experimental study was conducted to investigate the flexural behavior of composite beams under the static load. The research parameters include formwork thickness, reinforcement rate, and formwork surface treatment. The results revealed that roughening the surface of UHPC formwork has a positive impact on enhancing the integrity of composite beams. The utilization of UHPC stay-in-place formwork can effectively improve the stiffness, cracking load, and peak load of members. Compared with that of the RC beam, the cracking load and peak load of composite beams increased by 63 % ∼ 103 % and 6 % ∼ 15 %, respectively, and the yielding stiffness increased by 23 % ∼ 41 %. Different from the RC beam, new cracks occurred on one side of the initial crack's end and continued to extend upwards rather than along the original crack. The existence of a significant quantity of tiny cracks in composite beams effectively slowed down the increase in the width of pre-existing cracks in the early stage of loading. Due to the multi-crack pattern exhibited by the UHPC formwork, the strain concentration of the steel bars was effectively mitigated. When subjected to the same load level, the strain of the longitudinal steel bars in composite beams was smaller than that of the RC beam. The formula for calculating the flexural bearing capacity of composite beams is established through theoretical analysis. In addition, the numerical model of the composite beam is established by the finite element method (FEM). The influence of the contact method of the UHPC-NC interface on the flexural performance of the composite beam is explored. The supplementary analysis of the parametric study of the reinforcement rate and the UHPC formwork thickness is carried out. When using ABAQUS for the numerical analysis of the composite beam, it is appropriate to adopt the cohesion model or the Tie model for the UHPC-NC interface, and it is not appropriate to use the Coulomb friction model.</p></div>\",\"PeriodicalId\":48642,\"journal\":{\"name\":\"Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352012424014061\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352012424014061","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

为了克服传统混凝土结构施工周期长、施工成本高、耐久性差等缺点,设计了七种采用超高性能混凝土现浇模板(UCB)的复合梁和一种钢筋混凝土(RC)梁。通过实验研究了复合梁在静载作用下的抗弯行为。研究参数包括模板厚度、配筋率和模板表面处理。研究结果表明,对 UHPC 模板表面进行粗化处理对增强复合梁的整体性有积极影响。使用超高性能混凝土现浇模板可有效提高构件的刚度、开裂荷载和峰值荷载。与钢筋混凝土梁相比,复合梁的开裂荷载和峰值荷载分别增加了 63 % ∼ 103 % 和 6 % ∼ 15 %,屈服刚度增加了 23 % ∼ 41 %。与 RC 梁不同的是,新裂缝出现在初始裂缝末端的一侧,并继续向上延伸,而不是沿原裂缝延伸。复合梁中大量微小裂缝的存在有效地减缓了加载初期原有裂缝宽度的增加。由于 UHPC 模板呈现多裂缝模式,钢筋的应变集中得到了有效缓解。在承受相同荷载水平时,复合梁中纵向钢筋的应变小于钢筋混凝土梁。通过理论分析,建立了复合梁抗弯承载力的计算公式。此外,还通过有限元法(FEM)建立了复合梁的数值模型。探讨了 UHPC-NC 界面接触方式对复合梁抗弯性能的影响。对加固率和 UHPC 模板厚度的参数研究进行了补充分析。使用 ABAQUS 对复合梁进行数值分析时,UHPC-NC 接口宜采用内聚力模型或 Tie 模型,不宜采用库仑摩擦模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flexural behavior and numerical simulation of reinforced concrete beams with a UHPC stay-in-place formwork

To overcome the shortcomings of traditional concrete structures such as long construction cycle, high construction cost and poor durability, seven composite beams with a UHPC stay-in-place formwork (UCB) and one reinforced concrete (RC) beam were designed. An experimental study was conducted to investigate the flexural behavior of composite beams under the static load. The research parameters include formwork thickness, reinforcement rate, and formwork surface treatment. The results revealed that roughening the surface of UHPC formwork has a positive impact on enhancing the integrity of composite beams. The utilization of UHPC stay-in-place formwork can effectively improve the stiffness, cracking load, and peak load of members. Compared with that of the RC beam, the cracking load and peak load of composite beams increased by 63 % ∼ 103 % and 6 % ∼ 15 %, respectively, and the yielding stiffness increased by 23 % ∼ 41 %. Different from the RC beam, new cracks occurred on one side of the initial crack's end and continued to extend upwards rather than along the original crack. The existence of a significant quantity of tiny cracks in composite beams effectively slowed down the increase in the width of pre-existing cracks in the early stage of loading. Due to the multi-crack pattern exhibited by the UHPC formwork, the strain concentration of the steel bars was effectively mitigated. When subjected to the same load level, the strain of the longitudinal steel bars in composite beams was smaller than that of the RC beam. The formula for calculating the flexural bearing capacity of composite beams is established through theoretical analysis. In addition, the numerical model of the composite beam is established by the finite element method (FEM). The influence of the contact method of the UHPC-NC interface on the flexural performance of the composite beam is explored. The supplementary analysis of the parametric study of the reinforcement rate and the UHPC formwork thickness is carried out. When using ABAQUS for the numerical analysis of the composite beam, it is appropriate to adopt the cohesion model or the Tie model for the UHPC-NC interface, and it is not appropriate to use the Coulomb friction model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structures
Structures Engineering-Architecture
CiteScore
5.70
自引率
17.10%
发文量
1187
期刊介绍: Structures aims to publish internationally-leading research across the full breadth of structural engineering. Papers for Structures are particularly welcome in which high-quality research will benefit from wide readership of academics and practitioners such that not only high citation rates but also tangible industrial-related pathways to impact are achieved.
期刊最新文献
Experimental study on acoustic emission damage in precast reinforced concrete interior joints containing disc springs Experimental and numerical studies on the mechanical behavior of metallic connecting pieces in point-supported glass facades A new cross section hypothesis-based approach for quantifying deployment characteristics of deployable inflatable structures Numerical study on seismic performance of a prefabricated subway station considering the influence of construction process Investigation on shear performance of sliding-type rapid segmental joints for shield tunnels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1