贻贝组织中微塑料的净化动力学和积累

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Marine environmental research Pub Date : 2024-09-10 DOI:10.1016/j.marenvres.2024.106731
{"title":"贻贝组织中微塑料的净化动力学和积累","authors":"","doi":"10.1016/j.marenvres.2024.106731","DOIUrl":null,"url":null,"abstract":"<div><p>Microplastics (MPs) constitute the predominant plastic type in marine environments. Since they occupy the same size fraction of sediment particles and planktonic organisms they are potentially bioavailable to a broad scope of organisms, such as filter feeders, which are particularly vulnerable to MP ingestion. To understand the potential impact of MPs in filter feeders it is essential to clarify the uptake, accumulation patterns and elimination rates with time of MPs. The aim of this study was to determine the depuration dynamics and accumulation in tissues of mussels <em>Mytilus galloprovincialis</em> exposed during 24 h to different size polystyrene MPs (1 μm and 10 μm), and depurated for a maximum of 7 days (T = 24 h, T = 48 h and T = 7 d). Mussels were chemically digested with KOH 10% and filtered to quantify the number of MP ingested, and they were cryostat sliced for MP localization in tissues. Both MP sizes were quantified in all depuration times, but mussels accumulated significantly higher quantities of 10 μm MP throughout depuration compared to 1 μm MP. A significant decrease was observed after 7 d depuration in mussels exposed to 10 μm. Mussels removed the same amount of 1 and 10 μm MP after 7 days depuration. However, the depuration dynamics differed for each size-MPs and showed to be size-dependent. Most of both size MPs were eliminated in the first 24 h, but 1 μm MP showed to pass faster through the digestive tract than 10 μm MP. MPs of 1 μm and 10 μm were localized mainly in the lumen and a few in the epithelium of the digestive tract (stomach, intestine and digestive gland) during the depuration and in the gills after the exposure; as confirmed by Raman spectroscopy. The usage of chemical digestion and histological analysis as complementary techniques show to be suitable to infer the depuration dynamics of MPs in mussels.</p></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0141113624003921/pdfft?md5=e8609d9960dff3ba7f83ce468832d554&pid=1-s2.0-S0141113624003921-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Depuration kinetics and accumulation of microplastics in tissues of mussel Mytilus galloprovincialis\",\"authors\":\"\",\"doi\":\"10.1016/j.marenvres.2024.106731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microplastics (MPs) constitute the predominant plastic type in marine environments. Since they occupy the same size fraction of sediment particles and planktonic organisms they are potentially bioavailable to a broad scope of organisms, such as filter feeders, which are particularly vulnerable to MP ingestion. To understand the potential impact of MPs in filter feeders it is essential to clarify the uptake, accumulation patterns and elimination rates with time of MPs. The aim of this study was to determine the depuration dynamics and accumulation in tissues of mussels <em>Mytilus galloprovincialis</em> exposed during 24 h to different size polystyrene MPs (1 μm and 10 μm), and depurated for a maximum of 7 days (T = 24 h, T = 48 h and T = 7 d). Mussels were chemically digested with KOH 10% and filtered to quantify the number of MP ingested, and they were cryostat sliced for MP localization in tissues. Both MP sizes were quantified in all depuration times, but mussels accumulated significantly higher quantities of 10 μm MP throughout depuration compared to 1 μm MP. A significant decrease was observed after 7 d depuration in mussels exposed to 10 μm. Mussels removed the same amount of 1 and 10 μm MP after 7 days depuration. However, the depuration dynamics differed for each size-MPs and showed to be size-dependent. Most of both size MPs were eliminated in the first 24 h, but 1 μm MP showed to pass faster through the digestive tract than 10 μm MP. MPs of 1 μm and 10 μm were localized mainly in the lumen and a few in the epithelium of the digestive tract (stomach, intestine and digestive gland) during the depuration and in the gills after the exposure; as confirmed by Raman spectroscopy. The usage of chemical digestion and histological analysis as complementary techniques show to be suitable to infer the depuration dynamics of MPs in mussels.</p></div>\",\"PeriodicalId\":18204,\"journal\":{\"name\":\"Marine environmental research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0141113624003921/pdfft?md5=e8609d9960dff3ba7f83ce468832d554&pid=1-s2.0-S0141113624003921-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine environmental research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141113624003921\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine environmental research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141113624003921","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

微塑料(MPs)是海洋环境中最主要的塑料类型。由于微塑料在沉积物颗粒和浮游生物中所占的尺寸比例相同,因此有可能被多种生物所利用,例如滤食动物,它们特别容易摄入微塑料。要了解 MPs 对滤食动物的潜在影响,就必须明确 MPs 的摄取、积累模式以及随时间推移的消除率。本研究旨在确定贻贝在 24 小时内暴露于不同尺寸的聚苯乙烯 MPs(1 μm 和 10 μm)并在最长 7 天(T = 24 小时、T = 48 小时和 T = 7 天)内的净化动态以及组织中的积累情况。用 10%的 KOH 对河蚌进行化学消化并过滤,以量化摄入的 MP 数量,然后将河蚌冷冻切片,用于 MP 在组织中的定位。两种尺寸的 MP 在所有的净化时间内都被定量,但与 1 μm MP 相比,贻贝在整个净化过程中积累的 10 μm MP 数量要高得多。暴露于 10 μm MP 的贻贝在净化 7 d 后观察到明显减少。7 天后,贻贝去除的 1 μm 和 10 μm MP 数量相同。然而,每种尺寸的 MPs 的净化动态都不同,并显示出尺寸依赖性。两种尺寸的 MP 大都在最初的 24 小时内被清除,但 1 μm MP 通过消化道的速度比 10 μm MP 快。拉曼光谱证实,1 μm 和 10 μm 的 MP 主要分布在消化道(胃、肠和消化腺)的管腔中,少数分布在消化道上皮细胞中。化学消化和组织学分析作为互补技术,适用于推断贻贝中 MPs 的净化动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Depuration kinetics and accumulation of microplastics in tissues of mussel Mytilus galloprovincialis

Microplastics (MPs) constitute the predominant plastic type in marine environments. Since they occupy the same size fraction of sediment particles and planktonic organisms they are potentially bioavailable to a broad scope of organisms, such as filter feeders, which are particularly vulnerable to MP ingestion. To understand the potential impact of MPs in filter feeders it is essential to clarify the uptake, accumulation patterns and elimination rates with time of MPs. The aim of this study was to determine the depuration dynamics and accumulation in tissues of mussels Mytilus galloprovincialis exposed during 24 h to different size polystyrene MPs (1 μm and 10 μm), and depurated for a maximum of 7 days (T = 24 h, T = 48 h and T = 7 d). Mussels were chemically digested with KOH 10% and filtered to quantify the number of MP ingested, and they were cryostat sliced for MP localization in tissues. Both MP sizes were quantified in all depuration times, but mussels accumulated significantly higher quantities of 10 μm MP throughout depuration compared to 1 μm MP. A significant decrease was observed after 7 d depuration in mussels exposed to 10 μm. Mussels removed the same amount of 1 and 10 μm MP after 7 days depuration. However, the depuration dynamics differed for each size-MPs and showed to be size-dependent. Most of both size MPs were eliminated in the first 24 h, but 1 μm MP showed to pass faster through the digestive tract than 10 μm MP. MPs of 1 μm and 10 μm were localized mainly in the lumen and a few in the epithelium of the digestive tract (stomach, intestine and digestive gland) during the depuration and in the gills after the exposure; as confirmed by Raman spectroscopy. The usage of chemical digestion and histological analysis as complementary techniques show to be suitable to infer the depuration dynamics of MPs in mussels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine environmental research
Marine environmental research 环境科学-毒理学
CiteScore
5.90
自引率
3.00%
发文量
217
审稿时长
46 days
期刊介绍: Marine Environmental Research publishes original research papers on chemical, physical, and biological interactions in the oceans and coastal waters. The journal serves as a forum for new information on biology, chemistry, and toxicology and syntheses that advance understanding of marine environmental processes. Submission of multidisciplinary studies is encouraged. Studies that utilize experimental approaches to clarify the roles of anthropogenic and natural causes of changes in marine ecosystems are especially welcome, as are those studies that represent new developments of a theoretical or conceptual aspect of marine science. All papers published in this journal are reviewed by qualified peers prior to acceptance and publication. Examples of topics considered to be appropriate for the journal include, but are not limited to, the following: – The extent, persistence, and consequences of change and the recovery from such change in natural marine systems – The biochemical, physiological, and ecological consequences of contaminants to marine organisms and ecosystems – The biogeochemistry of naturally occurring and anthropogenic substances – Models that describe and predict the above processes – Monitoring studies, to the extent that their results provide new information on functional processes – Methodological papers describing improved quantitative techniques for the marine sciences.
期刊最新文献
Microplastic biofilms promote the horizontal transfer of antibiotic resistance genes in estuarine environments. Mutligenerational chronic exposure to near future ocean acidification in European sea bass (Dicentrarchus labrax): Insights into the regulation of the transcriptome in a sensory organ involved in feed intake, the tongue. Quarry rock reef design features influence fish assemblage structure across a systematically heterogenous restoration reef. Microbial ocean-atmosphere transfer: The influence of sewage discharge into coastal waters on bioaerosols from an urban beach in the subtropical Atlantic. Skeletal magnesium content in Antarctic echinoderms along a latitudinal gradient
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1