利用卷积神经网络改进药物相互作用预测的研究

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Soft Computing Pub Date : 2024-09-13 DOI:10.1016/j.asoc.2024.112242
{"title":"利用卷积神经网络改进药物相互作用预测的研究","authors":"","doi":"10.1016/j.asoc.2024.112242","DOIUrl":null,"url":null,"abstract":"<div><p>Appropriate studies on drug–drug interactions (DDIs) can evade possible adverse side effects due to the ingestion of multiple drugs. This paper proposes a novel framework called <em>Similarity Network Fusion and Hybrid Convolutional Neural Network (SNF–HCNN)</em> to predict the DDIs better. The proposed framework leverages data from DrugBank, PubChem, and SIDER. Seven critical drug features are extracted: <em>Target</em>, <em>Transporter</em>, <em>Enzymes</em>, <em>Chemical substructure</em>, <em>Carrier</em>, <em>Offside</em>, and <em>Side effects</em>. The Jaccard Similarity measure evaluates the similarity of drug features to construct a comprehensive similarity matrix that effectively captures potential drug relationships and patterns. The similarity selection process identifies the most relevant features, reduces redundancy, and enhances identifying potential drug interactions. Integrating Similarity Network Fusion (SNF) with the selected similarity matrix ensures a comprehensive representation of drug features and leads to superior accuracy compared to conventional methods. Our experimental results demonstrate the effectiveness of the proposed hybrid convolutional neural network (HCNN) architectures, such as CNN+LR (CNN+Logistic Regression), CNN+RF (CNN+Random Forest), and CNN+SVM (CNN+Support Vector Machine), showing impressive accuracies of 95.19%, 94.45%, and 93.65%, respectively. Moreover, CNN+LR outperforms other approaches regarding precision, sensitivity, F1-score, and AUC score, which implicate better outcomes for ensuring medication safety aspects in clinical settings in the future.</p></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on improving drug–drug interactions prediction using convolutional neural networks\",\"authors\":\"\",\"doi\":\"10.1016/j.asoc.2024.112242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Appropriate studies on drug–drug interactions (DDIs) can evade possible adverse side effects due to the ingestion of multiple drugs. This paper proposes a novel framework called <em>Similarity Network Fusion and Hybrid Convolutional Neural Network (SNF–HCNN)</em> to predict the DDIs better. The proposed framework leverages data from DrugBank, PubChem, and SIDER. Seven critical drug features are extracted: <em>Target</em>, <em>Transporter</em>, <em>Enzymes</em>, <em>Chemical substructure</em>, <em>Carrier</em>, <em>Offside</em>, and <em>Side effects</em>. The Jaccard Similarity measure evaluates the similarity of drug features to construct a comprehensive similarity matrix that effectively captures potential drug relationships and patterns. The similarity selection process identifies the most relevant features, reduces redundancy, and enhances identifying potential drug interactions. Integrating Similarity Network Fusion (SNF) with the selected similarity matrix ensures a comprehensive representation of drug features and leads to superior accuracy compared to conventional methods. Our experimental results demonstrate the effectiveness of the proposed hybrid convolutional neural network (HCNN) architectures, such as CNN+LR (CNN+Logistic Regression), CNN+RF (CNN+Random Forest), and CNN+SVM (CNN+Support Vector Machine), showing impressive accuracies of 95.19%, 94.45%, and 93.65%, respectively. Moreover, CNN+LR outperforms other approaches regarding precision, sensitivity, F1-score, and AUC score, which implicate better outcomes for ensuring medication safety aspects in clinical settings in the future.</p></div>\",\"PeriodicalId\":50737,\"journal\":{\"name\":\"Applied Soft Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568494624010160\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494624010160","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

对药物相互作用(DDIs)进行适当的研究可以避免因服用多种药物而可能产生的不良副作用。本文提出了一个名为 "相似性网络融合与混合卷积神经网络(SNF-HCNN)"的新框架,以更好地预测 DDIs。该框架利用了来自 DrugBank、PubChem 和 SIDER 的数据。提取了七个关键药物特征:靶点、转运体、酶、化学亚结构、载体、越位和副作用。Jaccard 相似度测量法可评估药物特征的相似性,从而构建一个全面的相似度矩阵,有效捕捉潜在的药物关系和模式。相似性选择过程可识别最相关的特征,减少冗余,并增强识别潜在药物相互作用的能力。将相似性网络融合(SNF)与所选相似性矩阵相结合,可确保药物特征的全面呈现,与传统方法相比具有更高的准确性。我们的实验结果证明了所提出的混合卷积神经网络(HCNN)架构的有效性,如 CNN+LR(CNN+逻辑回归)、CNN+RF(CNN+随机森林)和 CNN+SVM(CNN+支持向量机),其准确率分别达到了令人印象深刻的 95.19%、94.45% 和 93.65%。此外,CNN+LR 在精确度、灵敏度、F1 分数和 AUC 分数方面都优于其他方法,这意味着未来在临床环境中确保用药安全方面会有更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A study on improving drug–drug interactions prediction using convolutional neural networks

Appropriate studies on drug–drug interactions (DDIs) can evade possible adverse side effects due to the ingestion of multiple drugs. This paper proposes a novel framework called Similarity Network Fusion and Hybrid Convolutional Neural Network (SNF–HCNN) to predict the DDIs better. The proposed framework leverages data from DrugBank, PubChem, and SIDER. Seven critical drug features are extracted: Target, Transporter, Enzymes, Chemical substructure, Carrier, Offside, and Side effects. The Jaccard Similarity measure evaluates the similarity of drug features to construct a comprehensive similarity matrix that effectively captures potential drug relationships and patterns. The similarity selection process identifies the most relevant features, reduces redundancy, and enhances identifying potential drug interactions. Integrating Similarity Network Fusion (SNF) with the selected similarity matrix ensures a comprehensive representation of drug features and leads to superior accuracy compared to conventional methods. Our experimental results demonstrate the effectiveness of the proposed hybrid convolutional neural network (HCNN) architectures, such as CNN+LR (CNN+Logistic Regression), CNN+RF (CNN+Random Forest), and CNN+SVM (CNN+Support Vector Machine), showing impressive accuracies of 95.19%, 94.45%, and 93.65%, respectively. Moreover, CNN+LR outperforms other approaches regarding precision, sensitivity, F1-score, and AUC score, which implicate better outcomes for ensuring medication safety aspects in clinical settings in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
期刊最新文献
An effective surrogate-assisted rank method for evolutionary neural architecture search Knowledge graph-driven mountain railway alignment optimization integrating karst hazard assessment Medical image segmentation network based on feature filtering with low number of parameters Robust Chinese Clinical Named Entity Recognition with information bottleneck and adversarial training Clustering based fuzzy classification with a noise cluster in detecting fraud in insurance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1