cvxRiskOpt:基于 CVXPY 的风险优化工具

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-08-30 DOI:10.1109/LCSYS.2024.3452194
Sleiman Safaoui;Tyler H. Summers
{"title":"cvxRiskOpt:基于 CVXPY 的风险优化工具","authors":"Sleiman Safaoui;Tyler H. Summers","doi":"10.1109/LCSYS.2024.3452194","DOIUrl":null,"url":null,"abstract":"We introduce cvxRiskOpt (convex Risk-based Optimization): a Python package built on top of CVXPY for the rapid prototyping of convex risk-based optimization problems and generating embeddable C code using CVXPYgen. Our package provides high-level functions to handle several risk-based optimization problems and constraints. These functions reformulate problems and constraints involving random variables and uncertainty into deterministic convex counterparts. The output is either a CVXPY Problem instance or CVXPY constraints that users can directly add to their CVXPY Problem instance. Accordingly, our package can use CVXPYgen to generate C code resulting in custom embeddable risk-based optimization problems. cvxRiskOpt is available at \n<uri>https://tsummerslab.github.io/cvxRiskOpt/</uri>\n.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"cvxRiskOpt: A Risk-Based Optimization Tool Based on CVXPY\",\"authors\":\"Sleiman Safaoui;Tyler H. Summers\",\"doi\":\"10.1109/LCSYS.2024.3452194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce cvxRiskOpt (convex Risk-based Optimization): a Python package built on top of CVXPY for the rapid prototyping of convex risk-based optimization problems and generating embeddable C code using CVXPYgen. Our package provides high-level functions to handle several risk-based optimization problems and constraints. These functions reformulate problems and constraints involving random variables and uncertainty into deterministic convex counterparts. The output is either a CVXPY Problem instance or CVXPY constraints that users can directly add to their CVXPY Problem instance. Accordingly, our package can use CVXPYgen to generate C code resulting in custom embeddable risk-based optimization problems. cvxRiskOpt is available at \\n<uri>https://tsummerslab.github.io/cvxRiskOpt/</uri>\\n.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10660489/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10660489/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍 cvxRiskOpt(基于风险的凸优化):一个建立在 CVXPY 基础上的 Python 软件包,用于快速构建基于风险的凸优化问题原型,并使用 CVXPYgen 生成可嵌入的 C 代码。我们的软件包提供了高级函数来处理若干基于风险的优化问题和约束条件。这些函数将涉及随机变量和不确定性的问题和约束条件重新表述为确定性凸对应问题和约束条件。输出结果是 CVXPY 问题实例或 CVXPY 约束条件,用户可直接将其添加到 CVXPY 问题实例中。因此,我们的软件包可以使用 CVXPYgen 生成 C 代码,从而定制可嵌入的基于风险的优化问题。cvxRiskOpt 可在 https://tsummerslab.github.io/cvxRiskOpt/ 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
cvxRiskOpt: A Risk-Based Optimization Tool Based on CVXPY
We introduce cvxRiskOpt (convex Risk-based Optimization): a Python package built on top of CVXPY for the rapid prototyping of convex risk-based optimization problems and generating embeddable C code using CVXPYgen. Our package provides high-level functions to handle several risk-based optimization problems and constraints. These functions reformulate problems and constraints involving random variables and uncertainty into deterministic convex counterparts. The output is either a CVXPY Problem instance or CVXPY constraints that users can directly add to their CVXPY Problem instance. Accordingly, our package can use CVXPYgen to generate C code resulting in custom embeddable risk-based optimization problems. cvxRiskOpt is available at https://tsummerslab.github.io/cvxRiskOpt/ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Rationality of Learning Algorithms in Repeated Normal-Form Games Impact of Opinion on Disease Transmission With Waterborne Pathogen and Stubborn Community Numerical and Lyapunov-Based Investigation of the Effect of Stenosis on Blood Transport Stability Using a Control-Theoretic PDE Model of Cardiovascular Flow Almost Sure Convergence and Non-Asymptotic Concentration Bounds for Stochastic Mirror Descent Algorithm Opinion Dynamics With Set-Based Confidence: Convergence Criteria and Periodic Solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1