Mohammed Saif;Md. Zoheb Hassan;Md. Jahangir Hossain
{"title":"在毫米波空地一体化网络中进行分散聚合以实现高能效的联合学习","authors":"Mohammed Saif;Md. Zoheb Hassan;Md. Jahangir Hossain","doi":"10.1109/TMLCN.2024.3410211","DOIUrl":null,"url":null,"abstract":"It is anticipated that aerial-terrestrial integrated networks incorporating unmanned aerial vehicles (UAVs) mounted relays will offer improved coverage and connectivity in the beyond 5G era. Meanwhile, federated learning (FL) is a promising distributed machine learning technique for building inference models over wireless networks due to its ability to maintain user privacy and reduce communication overhead. However, off-the-shelf FL models aggregate global parameters at a central parameter server (CPS), increasing energy consumption and latency, as well as inefficiently utilizing radio resource blocks (RRBs) for distributed user devices (UDs). This paper presents a resource-efficient and decentralized FL framework called FedMoD (federated learning with model dissemination), for millimeter-wave (mmWave) aerial-terrestrial integrated networks with the following two unique characteristics. Firstly, FedMoD incorporates a novel decentralized model dissemination scheme that uses UAVs as local model aggregators through UAV-to-UAV and device-to-device (D2D) communications. As a result, FedMoD 1) increases the number of participant UDs in developing the FL model; and 2) achieves global model aggregation without involving CPS. Secondly, FedMoD reduces FL’s energy consumption using radio resource management (RRM) under the constraints of over-the-air learning latency. To achieve this, by leveraging graph theory, FedMoD optimizes the scheduling of line-of-sight (LOS) UDs to suitable UAVs and RRBs over mmWave links and non-LOS UDs to available LOS UDs via overlay D2D communications. Extensive simulations reveal that FedMoD, despite being decentralized, offers the same convergence performance to the conventional centralized FL frameworks.","PeriodicalId":100641,"journal":{"name":"IEEE Transactions on Machine Learning in Communications and Networking","volume":"2 ","pages":"1283-1304"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10550002","citationCount":"0","resultStr":"{\"title\":\"Decentralized Aggregation for Energy-Efficient Federated Learning in mmWave Aerial-Terrestrial Integrated Networks\",\"authors\":\"Mohammed Saif;Md. Zoheb Hassan;Md. Jahangir Hossain\",\"doi\":\"10.1109/TMLCN.2024.3410211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is anticipated that aerial-terrestrial integrated networks incorporating unmanned aerial vehicles (UAVs) mounted relays will offer improved coverage and connectivity in the beyond 5G era. Meanwhile, federated learning (FL) is a promising distributed machine learning technique for building inference models over wireless networks due to its ability to maintain user privacy and reduce communication overhead. However, off-the-shelf FL models aggregate global parameters at a central parameter server (CPS), increasing energy consumption and latency, as well as inefficiently utilizing radio resource blocks (RRBs) for distributed user devices (UDs). This paper presents a resource-efficient and decentralized FL framework called FedMoD (federated learning with model dissemination), for millimeter-wave (mmWave) aerial-terrestrial integrated networks with the following two unique characteristics. Firstly, FedMoD incorporates a novel decentralized model dissemination scheme that uses UAVs as local model aggregators through UAV-to-UAV and device-to-device (D2D) communications. As a result, FedMoD 1) increases the number of participant UDs in developing the FL model; and 2) achieves global model aggregation without involving CPS. Secondly, FedMoD reduces FL’s energy consumption using radio resource management (RRM) under the constraints of over-the-air learning latency. To achieve this, by leveraging graph theory, FedMoD optimizes the scheduling of line-of-sight (LOS) UDs to suitable UAVs and RRBs over mmWave links and non-LOS UDs to available LOS UDs via overlay D2D communications. Extensive simulations reveal that FedMoD, despite being decentralized, offers the same convergence performance to the conventional centralized FL frameworks.\",\"PeriodicalId\":100641,\"journal\":{\"name\":\"IEEE Transactions on Machine Learning in Communications and Networking\",\"volume\":\"2 \",\"pages\":\"1283-1304\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10550002\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Machine Learning in Communications and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10550002/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Machine Learning in Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10550002/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Decentralized Aggregation for Energy-Efficient Federated Learning in mmWave Aerial-Terrestrial Integrated Networks
It is anticipated that aerial-terrestrial integrated networks incorporating unmanned aerial vehicles (UAVs) mounted relays will offer improved coverage and connectivity in the beyond 5G era. Meanwhile, federated learning (FL) is a promising distributed machine learning technique for building inference models over wireless networks due to its ability to maintain user privacy and reduce communication overhead. However, off-the-shelf FL models aggregate global parameters at a central parameter server (CPS), increasing energy consumption and latency, as well as inefficiently utilizing radio resource blocks (RRBs) for distributed user devices (UDs). This paper presents a resource-efficient and decentralized FL framework called FedMoD (federated learning with model dissemination), for millimeter-wave (mmWave) aerial-terrestrial integrated networks with the following two unique characteristics. Firstly, FedMoD incorporates a novel decentralized model dissemination scheme that uses UAVs as local model aggregators through UAV-to-UAV and device-to-device (D2D) communications. As a result, FedMoD 1) increases the number of participant UDs in developing the FL model; and 2) achieves global model aggregation without involving CPS. Secondly, FedMoD reduces FL’s energy consumption using radio resource management (RRM) under the constraints of over-the-air learning latency. To achieve this, by leveraging graph theory, FedMoD optimizes the scheduling of line-of-sight (LOS) UDs to suitable UAVs and RRBs over mmWave links and non-LOS UDs to available LOS UDs via overlay D2D communications. Extensive simulations reveal that FedMoD, despite being decentralized, offers the same convergence performance to the conventional centralized FL frameworks.