喷流与深对流相互作用引发的热带航空湍流

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Geophysical Research: Atmospheres Pub Date : 2024-09-13 DOI:10.1029/2024JD040763
Haoming Chen, Xiaoming Shi, Xiuwen Nie, Yueya Wang, Christy Yan Yu Leung, Ping Cheung, Pak Wai Chan
{"title":"喷流与深对流相互作用引发的热带航空湍流","authors":"Haoming Chen,&nbsp;Xiaoming Shi,&nbsp;Xiuwen Nie,&nbsp;Yueya Wang,&nbsp;Christy Yan Yu Leung,&nbsp;Ping Cheung,&nbsp;Pak Wai Chan","doi":"10.1029/2024JD040763","DOIUrl":null,"url":null,"abstract":"<p>On 18 December 2022, Hawaiian Airlines flight HA35 encountered severe turbulence without warning in a cloud-free height. We reproduced this incident using the Weather Research and Forecasting Model (WRF) at a convection-permitting resolution. We found that this case of tropical upper-level turbulence occurred primarily due to the fast-growing convective tower in the unstable layer created by gravity wave breaking. At lower altitudes, a mesoscale convective system (MCS) caused a decrease in wind speed in both upstream and downstream regions. At upper levels, a large-scale jet descended and accelerated after flowing over the top of the MCS, which acted like a barrier and produced a situation similar to a downslope windstorm due to mountain terrain. Upper-level turbulence is 2–3 km higher than the top of the MCS. The critical level above the jet and the locally self-induced critical level created the locally enhanced descending jet stream, which destabilized the flow through Kelvin–Helmholtz instabilities. The convective tower existed near the flight route and played an important role in triggering turbulence in the unstable environment through its convective gravity waves.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD040763","citationCount":"0","resultStr":"{\"title\":\"Tropical Aviation Turbulence Induced by the Interaction Between a Jet Stream and Deep Convection\",\"authors\":\"Haoming Chen,&nbsp;Xiaoming Shi,&nbsp;Xiuwen Nie,&nbsp;Yueya Wang,&nbsp;Christy Yan Yu Leung,&nbsp;Ping Cheung,&nbsp;Pak Wai Chan\",\"doi\":\"10.1029/2024JD040763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>On 18 December 2022, Hawaiian Airlines flight HA35 encountered severe turbulence without warning in a cloud-free height. We reproduced this incident using the Weather Research and Forecasting Model (WRF) at a convection-permitting resolution. We found that this case of tropical upper-level turbulence occurred primarily due to the fast-growing convective tower in the unstable layer created by gravity wave breaking. At lower altitudes, a mesoscale convective system (MCS) caused a decrease in wind speed in both upstream and downstream regions. At upper levels, a large-scale jet descended and accelerated after flowing over the top of the MCS, which acted like a barrier and produced a situation similar to a downslope windstorm due to mountain terrain. Upper-level turbulence is 2–3 km higher than the top of the MCS. The critical level above the jet and the locally self-induced critical level created the locally enhanced descending jet stream, which destabilized the flow through Kelvin–Helmholtz instabilities. The convective tower existed near the flight route and played an important role in triggering turbulence in the unstable environment through its convective gravity waves.</p>\",\"PeriodicalId\":15986,\"journal\":{\"name\":\"Journal of Geophysical Research: Atmospheres\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD040763\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Atmospheres\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JD040763\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD040763","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

2022 年 12 月 18 日,夏威夷航空公司 HA35 航班在无云高度遭遇无预警严重湍流。我们使用天气研究和预报模型(WRF)在允许对流的分辨率下重现了这一事件。我们发现,这次热带高层湍流的发生主要是由于重力波打破不稳定层中快速增长的对流塔造成的。在低空,中尺度对流系统(MCS)造成了上下游地区风速的下降。在高空,大尺度喷流在流过中尺度对流系统顶部后下降并加速,这就像一道屏障,由于山地地形的原因,产生了类似于下坡暴风的情况。高层湍流比多层流顶部高出 2-3 公里。喷流上方的临界水平和局部自发临界水平形成了局部增强的下降喷流,通过开尔文-赫尔姆霍兹不稳定性破坏了气流的稳定。对流塔存在于飞行路线附近,通过其对流重力波在不稳定环境中引发湍流发挥了重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tropical Aviation Turbulence Induced by the Interaction Between a Jet Stream and Deep Convection

On 18 December 2022, Hawaiian Airlines flight HA35 encountered severe turbulence without warning in a cloud-free height. We reproduced this incident using the Weather Research and Forecasting Model (WRF) at a convection-permitting resolution. We found that this case of tropical upper-level turbulence occurred primarily due to the fast-growing convective tower in the unstable layer created by gravity wave breaking. At lower altitudes, a mesoscale convective system (MCS) caused a decrease in wind speed in both upstream and downstream regions. At upper levels, a large-scale jet descended and accelerated after flowing over the top of the MCS, which acted like a barrier and produced a situation similar to a downslope windstorm due to mountain terrain. Upper-level turbulence is 2–3 km higher than the top of the MCS. The critical level above the jet and the locally self-induced critical level created the locally enhanced descending jet stream, which destabilized the flow through Kelvin–Helmholtz instabilities. The convective tower existed near the flight route and played an important role in triggering turbulence in the unstable environment through its convective gravity waves.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
期刊最新文献
Local and Remote Effects of the Sub-Grid Turbulent Orographic Form Drag on the Summer Monsoon Precipitation Over Eastern China Atmospheric Microplastics Emission Source Potentials and Deposition Patterns in Semi-Arid Croplands of Northern China Evaluation of the Representation of Raindrop Self-Collection and Breakup in Two-Moment Bulk Models Using a Multifrequency Radar Retrieval Distinct Radiative and Chemical Impacts Between the Equatorial and Northern Extratropical Volcanic Injections Diagnosing Atmospheric Heating Rate Changes Using Radiative Kernels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1