高斯随机场的多级近似:协方差压缩、估计和空间预测

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED Advances in Computational Mathematics Pub Date : 2024-09-14 DOI:10.1007/s10444-024-10187-8
Helmut Harbrecht, Lukas Herrmann, Kristin Kirchner, Christoph Schwab
{"title":"高斯随机场的多级近似:协方差压缩、估计和空间预测","authors":"Helmut Harbrecht,&nbsp;Lukas Herrmann,&nbsp;Kristin Kirchner,&nbsp;Christoph Schwab","doi":"10.1007/s10444-024-10187-8","DOIUrl":null,"url":null,"abstract":"<div><p>The distribution of centered Gaussian random fields (GRFs) indexed by compacta such as smooth, bounded Euclidean domains or smooth, compact and orientable manifolds is determined by their covariance operators. We consider centered GRFs given as variational solutions to coloring operator equations driven by spatial white noise, with an elliptic self-adjoint pseudodifferential coloring operator from the Hörmander class. This includes the Matérn class of GRFs as a special case. Using biorthogonal multiresolution analyses on the manifold, we prove that the precision and covariance operators, respectively, may be identified with bi-infinite matrices and finite sections may be diagonally preconditioned rendering the condition number independent of the dimension <i>p</i> of this section. We prove that a tapering strategy by thresholding applied on finite sections of the bi-infinite precision and covariance matrices results in optimally numerically sparse approximations. That is, asymptotically only linearly many nonzero matrix entries are sufficient to approximate the original section of the bi-infinite covariance or precision matrix using this tapering strategy to arbitrary precision. The locations of these nonzero matrix entries can be determined a priori. The tapered covariance or precision matrices may also be optimally diagonally preconditioned. Analysis of the relative size of the entries of the tapered covariance matrices motivates novel, multilevel Monte Carlo (MLMC) oracles for covariance estimation, in sample complexity that scales log-linearly with respect to the number <i>p</i> of parameters. In addition, we propose and analyze novel compressive algorithms for simulating and kriging of GRFs. The complexity (work and memory vs. accuracy) of these three algorithms scales near-optimally in terms of the number of parameters <i>p</i> of the sample-wise approximation of the GRF in Sobolev scales.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10187-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Multilevel approximation of Gaussian random fields: Covariance compression, estimation, and spatial prediction\",\"authors\":\"Helmut Harbrecht,&nbsp;Lukas Herrmann,&nbsp;Kristin Kirchner,&nbsp;Christoph Schwab\",\"doi\":\"10.1007/s10444-024-10187-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The distribution of centered Gaussian random fields (GRFs) indexed by compacta such as smooth, bounded Euclidean domains or smooth, compact and orientable manifolds is determined by their covariance operators. We consider centered GRFs given as variational solutions to coloring operator equations driven by spatial white noise, with an elliptic self-adjoint pseudodifferential coloring operator from the Hörmander class. This includes the Matérn class of GRFs as a special case. Using biorthogonal multiresolution analyses on the manifold, we prove that the precision and covariance operators, respectively, may be identified with bi-infinite matrices and finite sections may be diagonally preconditioned rendering the condition number independent of the dimension <i>p</i> of this section. We prove that a tapering strategy by thresholding applied on finite sections of the bi-infinite precision and covariance matrices results in optimally numerically sparse approximations. That is, asymptotically only linearly many nonzero matrix entries are sufficient to approximate the original section of the bi-infinite covariance or precision matrix using this tapering strategy to arbitrary precision. The locations of these nonzero matrix entries can be determined a priori. The tapered covariance or precision matrices may also be optimally diagonally preconditioned. Analysis of the relative size of the entries of the tapered covariance matrices motivates novel, multilevel Monte Carlo (MLMC) oracles for covariance estimation, in sample complexity that scales log-linearly with respect to the number <i>p</i> of parameters. In addition, we propose and analyze novel compressive algorithms for simulating and kriging of GRFs. The complexity (work and memory vs. accuracy) of these three algorithms scales near-optimally in terms of the number of parameters <i>p</i> of the sample-wise approximation of the GRF in Sobolev scales.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10444-024-10187-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-024-10187-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10187-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

以光滑、有界欧几里得域或光滑、紧凑、可定向流形等紧凑性为索引的居中高斯随机场(GRFs)的分布由其协方差算子决定。我们考虑的居中 GRF 是由空间白噪声驱动的着色算子方程的变分解,其椭圆自关节伪微分着色算子来自赫曼德类。这包括作为特例的马特恩类 GRFs。利用流形上的双对角多分辨率分析,我们证明精度算子和协方差算子可分别与双无限矩阵识别,有限截面可进行对角预处理,从而使条件数与该截面的维数 p 无关。我们证明,在双无限精度矩阵和协方差矩阵的有限截面上采用阈值化的渐变策略,可以得到数值稀疏的最佳近似结果。也就是说,从渐近的角度看,只有线性数量的非零矩阵项才足以利用这种渐减策略将双无限协方差矩阵或精度矩阵的原始部分逼近到任意精度。这些非零矩阵项的位置可以预先确定。锥形协方差或精度矩阵也可以进行最佳对角预处理。对锥形协方差矩阵条目的相对大小进行分析,可激发用于协方差估计的新型多级蒙特卡罗(MLMC)算法,其样本复杂度与参数数 p 成对数线性关系。此外,我们还提出并分析了新颖的压缩算法,用于模拟和克里格GRF。这三种算法的复杂度(功耗和内存与精度)与 Sobolev 尺度下 GRF 抽样近似的参数数 p 的比例接近最优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multilevel approximation of Gaussian random fields: Covariance compression, estimation, and spatial prediction

The distribution of centered Gaussian random fields (GRFs) indexed by compacta such as smooth, bounded Euclidean domains or smooth, compact and orientable manifolds is determined by their covariance operators. We consider centered GRFs given as variational solutions to coloring operator equations driven by spatial white noise, with an elliptic self-adjoint pseudodifferential coloring operator from the Hörmander class. This includes the Matérn class of GRFs as a special case. Using biorthogonal multiresolution analyses on the manifold, we prove that the precision and covariance operators, respectively, may be identified with bi-infinite matrices and finite sections may be diagonally preconditioned rendering the condition number independent of the dimension p of this section. We prove that a tapering strategy by thresholding applied on finite sections of the bi-infinite precision and covariance matrices results in optimally numerically sparse approximations. That is, asymptotically only linearly many nonzero matrix entries are sufficient to approximate the original section of the bi-infinite covariance or precision matrix using this tapering strategy to arbitrary precision. The locations of these nonzero matrix entries can be determined a priori. The tapered covariance or precision matrices may also be optimally diagonally preconditioned. Analysis of the relative size of the entries of the tapered covariance matrices motivates novel, multilevel Monte Carlo (MLMC) oracles for covariance estimation, in sample complexity that scales log-linearly with respect to the number p of parameters. In addition, we propose and analyze novel compressive algorithms for simulating and kriging of GRFs. The complexity (work and memory vs. accuracy) of these three algorithms scales near-optimally in terms of the number of parameters p of the sample-wise approximation of the GRF in Sobolev scales.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
期刊最新文献
Higher-order iterative decoupling for poroelasticity Adaptive quarklet tree approximation Efficient computation of the sinc matrix function for the integration of second-order differential equations Sobolev regularity of bivariate isogeometric finite element spaces in case of a geometry map with degenerate corner An optimal ansatz space for moving least squares approximation on spheres
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1