聚二甲基硅氧烷基聚氨酯和聚(丙二醇)基聚氨酯的共连续结构混合物:形态演变、协同效应及在应变传感器中的应用

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Polymer Pub Date : 2024-09-12 DOI:10.1016/j.polymer.2024.127615
{"title":"聚二甲基硅氧烷基聚氨酯和聚(丙二醇)基聚氨酯的共连续结构混合物:形态演变、协同效应及在应变传感器中的应用","authors":"","doi":"10.1016/j.polymer.2024.127615","DOIUrl":null,"url":null,"abstract":"<div><p>Blending is an effective way to improve properties of rubbers and develop new materials, so more than 75 % of the rubber consumption in the world is rubber blend. However, blending of thermoplastic elastomers has not yet been emphasized, and few successful examples have been reported. The main challenge for blend systems is compatibility of two components. Herein, a series of (polydimethylsiloxane-based PU)-g-(poly (propylene glycol)-based PU) ((PDMS-PU)-g-(PPG-PU)) graft copolymers with different graft chain lengths and hard segment contents (HSC) were synthesized and utilized as compatibilizers of PDMS-PU/PPG-PU blends. The influence of the structure of compatibilizers on the morphology of blends was investigated, and the compatibilization mechanism was proposed. With the solubilization, the phase structure of blends transforms from “droplet-in-matrix” morphologies to co-continuous ones, and the average size of PPG-PU dispersed phase decreases from 3.5 ± 0.45 μm to 230 ± 60 nm. This is the first time that thermoplastic PDMS-PU/PPG-PU blends with co-continuous structures have been successfully prepared. The properties of blends exhibit synergistic effects. For example, they show high tensile strength of PPG-PU in mechanical properties and unique properties of PDMS in dynamic mechanical properties, weather resistance, water resistance and biocompatibility. In addition, strain sensors were fabricated by introducing carbon nanotubes (CNTs) into the blends, which demonstrated remarkable sensing capability for diverse human body motions.</p></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blends of polydimethylsiloxane-based polyurethane and poly (propylene glycol)-based polyurethane with co-continuous structures: Morphology evolution, synergistic effects and application in strain sensors\",\"authors\":\"\",\"doi\":\"10.1016/j.polymer.2024.127615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Blending is an effective way to improve properties of rubbers and develop new materials, so more than 75 % of the rubber consumption in the world is rubber blend. However, blending of thermoplastic elastomers has not yet been emphasized, and few successful examples have been reported. The main challenge for blend systems is compatibility of two components. Herein, a series of (polydimethylsiloxane-based PU)-g-(poly (propylene glycol)-based PU) ((PDMS-PU)-g-(PPG-PU)) graft copolymers with different graft chain lengths and hard segment contents (HSC) were synthesized and utilized as compatibilizers of PDMS-PU/PPG-PU blends. The influence of the structure of compatibilizers on the morphology of blends was investigated, and the compatibilization mechanism was proposed. With the solubilization, the phase structure of blends transforms from “droplet-in-matrix” morphologies to co-continuous ones, and the average size of PPG-PU dispersed phase decreases from 3.5 ± 0.45 μm to 230 ± 60 nm. This is the first time that thermoplastic PDMS-PU/PPG-PU blends with co-continuous structures have been successfully prepared. The properties of blends exhibit synergistic effects. For example, they show high tensile strength of PPG-PU in mechanical properties and unique properties of PDMS in dynamic mechanical properties, weather resistance, water resistance and biocompatibility. In addition, strain sensors were fabricated by introducing carbon nanotubes (CNTs) into the blends, which demonstrated remarkable sensing capability for diverse human body motions.</p></div>\",\"PeriodicalId\":405,\"journal\":{\"name\":\"Polymer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032386124009510\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124009510","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

混炼是提高橡胶性能和开发新材料的有效方法,因此全球超过 75% 的橡胶消耗量是混炼橡胶。然而,热塑性弹性体的共混尚未得到重视,成功的案例也寥寥无几。混合系统面临的主要挑战是两种成分的兼容性。本文合成了一系列具有不同接枝链长和硬段含量(HSC)的(聚二甲基硅氧烷基 PU)-g-(聚丙二醇基 PU)((PDMS-PU)-g-(PPG-PU))接枝共聚物,并将其用作 PDMS-PU/PPG-PU 混合物的相容剂。研究了相容剂结构对共混物形态的影响,并提出了相容机理。随着增溶作用的进行,共混物的相结构从 "液滴-基质 "形态转变为共连续形态,PPG-PU 分散相的平均粒径从 3.5 ± 0.45 μm 减小到 230 ± 60 nm。这是首次成功制备出具有共连续结构的热塑性 PDMS-PU/PPG-PU 共混物。共混物的性能表现出协同效应。例如,它们在机械性能方面显示出 PPG-PU 的高拉伸强度,而在动态机械性能、耐候性、耐水性和生物相容性方面则显示出 PDMS 的独特性能。此外,通过在共混物中引入碳纳米管(CNTs),还制作出了应变传感器,对人体的各种运动具有显著的传感能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Blends of polydimethylsiloxane-based polyurethane and poly (propylene glycol)-based polyurethane with co-continuous structures: Morphology evolution, synergistic effects and application in strain sensors

Blending is an effective way to improve properties of rubbers and develop new materials, so more than 75 % of the rubber consumption in the world is rubber blend. However, blending of thermoplastic elastomers has not yet been emphasized, and few successful examples have been reported. The main challenge for blend systems is compatibility of two components. Herein, a series of (polydimethylsiloxane-based PU)-g-(poly (propylene glycol)-based PU) ((PDMS-PU)-g-(PPG-PU)) graft copolymers with different graft chain lengths and hard segment contents (HSC) were synthesized and utilized as compatibilizers of PDMS-PU/PPG-PU blends. The influence of the structure of compatibilizers on the morphology of blends was investigated, and the compatibilization mechanism was proposed. With the solubilization, the phase structure of blends transforms from “droplet-in-matrix” morphologies to co-continuous ones, and the average size of PPG-PU dispersed phase decreases from 3.5 ± 0.45 μm to 230 ± 60 nm. This is the first time that thermoplastic PDMS-PU/PPG-PU blends with co-continuous structures have been successfully prepared. The properties of blends exhibit synergistic effects. For example, they show high tensile strength of PPG-PU in mechanical properties and unique properties of PDMS in dynamic mechanical properties, weather resistance, water resistance and biocompatibility. In addition, strain sensors were fabricated by introducing carbon nanotubes (CNTs) into the blends, which demonstrated remarkable sensing capability for diverse human body motions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer
Polymer 化学-高分子科学
CiteScore
7.90
自引率
8.70%
发文量
959
审稿时长
32 days
期刊介绍: Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics. The main scope is covered but not limited to the following core areas: Polymer Materials Nanocomposites and hybrid nanomaterials Polymer blends, films, fibres, networks and porous materials Physical Characterization Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films Polymer Engineering Advanced multiscale processing methods Polymer Synthesis, Modification and Self-assembly Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization Technological Applications Polymers for energy generation and storage Polymer membranes for separation technology Polymers for opto- and microelectronics.
期刊最新文献
Editorial Board Contents continued Graphical abstract TOC Graphical abstract TOC Dilatational rheological studies on the surface micelles of Poly(styrene)-b-Poly(4-vinyl pyridine) block copolymer at the air-water interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1