为可持续制氢量身定制单原子稳定的铜嬗变金属二卤化物

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-09-14 DOI:10.1002/anie.202414701
Lixin Yi, Kunkun Nie, Binjie Li, Yujia Zhang, Chen Hu, Xiaorong Hao, Ziyi Wang, Xiaoyan Qu, Zhengqing Liu, Wei Huang
{"title":"为可持续制氢量身定制单原子稳定的铜嬗变金属二卤化物","authors":"Lixin Yi, Kunkun Nie, Binjie Li, Yujia Zhang, Chen Hu, Xiaorong Hao, Ziyi Wang, Xiaoyan Qu, Zhengqing Liu, Wei Huang","doi":"10.1002/anie.202414701","DOIUrl":null,"url":null,"abstract":"Unconventional 1T′ phase transition metal dichalcogenides (TMDs) show great potential for hydrogen evolution reaction (HER). However, they are susceptible to transitioning into the stable 2H phase, which reduces their catalytic activity and stability. Herein, we present a scalable approach for designing thermally stable 1T′-TMDs hollow structures (HSs) by etching Cu1.94S templates from pre-synthesized Cu1.94S@TMDs heterostructures, including 1T′-MoS2, MoSe2, WS2, and WSe2 HSs. Furthermore, taking 1T′-MoS2 HSs as an example, the etched Cu ions can be firmly adsorbed on their surface in the form of single atoms (SAs) through Cu-S bonds, thereby elevating the phase transition temperature from 149 ºC to 373 ºC. Due to the advantages conferred by the 1T′ phase, hollow structure, and synergistic effect between Cu SAs and 1T′-MoS2 supports, the fabricated 1T′-MoS2 HSs demonstrate superior HER performance. Notably, their high-phase stability enables continuous operation of designed 1T′-MoS2 HSs for up to 200 hours at an ampere-level current density without significant activity decay. This work provides a universal method for synthesizing highly stable 1T′-TMDs electrocatalysts, with a particular focus on the relationship between their phase and catalytic stability.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring Copper Single-Atoms-Stabilized Metastable Transition-Metal-Dichalcogenides for Sustainable Hydrogen Production\",\"authors\":\"Lixin Yi, Kunkun Nie, Binjie Li, Yujia Zhang, Chen Hu, Xiaorong Hao, Ziyi Wang, Xiaoyan Qu, Zhengqing Liu, Wei Huang\",\"doi\":\"10.1002/anie.202414701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unconventional 1T′ phase transition metal dichalcogenides (TMDs) show great potential for hydrogen evolution reaction (HER). However, they are susceptible to transitioning into the stable 2H phase, which reduces their catalytic activity and stability. Herein, we present a scalable approach for designing thermally stable 1T′-TMDs hollow structures (HSs) by etching Cu1.94S templates from pre-synthesized Cu1.94S@TMDs heterostructures, including 1T′-MoS2, MoSe2, WS2, and WSe2 HSs. Furthermore, taking 1T′-MoS2 HSs as an example, the etched Cu ions can be firmly adsorbed on their surface in the form of single atoms (SAs) through Cu-S bonds, thereby elevating the phase transition temperature from 149 ºC to 373 ºC. Due to the advantages conferred by the 1T′ phase, hollow structure, and synergistic effect between Cu SAs and 1T′-MoS2 supports, the fabricated 1T′-MoS2 HSs demonstrate superior HER performance. Notably, their high-phase stability enables continuous operation of designed 1T′-MoS2 HSs for up to 200 hours at an ampere-level current density without significant activity decay. This work provides a universal method for synthesizing highly stable 1T′-TMDs electrocatalysts, with a particular focus on the relationship between their phase and catalytic stability.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202414701\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202414701","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

非常规的 1T′ 相过渡金属二卤化物 (TMD) 在氢进化反应 (HER) 中显示出巨大的潜力。然而,它们很容易过渡到稳定的 2H 相,从而降低了催化活性和稳定性。在此,我们提出了一种可扩展的方法,通过蚀刻预先合成的 Cu1.94S@TMDs 异质结构(包括 1T′-MoS2、MoSe2、WS2 和 WSe2 HS)中的 Cu1.94S 模板来设计热稳定的 1T′-TMDs 空心结构 (HS)。此外,以 1T′-MoS2 HSs 为例,蚀刻后的铜离子可通过 Cu-S 键以单原子(SA)的形式牢固吸附在其表面,从而将相变温度从 149 ºC 提高到 373 ºC。由于 1T′ 相、中空结构以及 Cu SAs 与 1T′-MoS2 支持物之间的协同效应所带来的优势,制备出的 1T′-MoS2 HS 具有卓越的 HER 性能。值得注意的是,它们的高相位稳定性使设计的 1T′-MoS2 HSs 能够在安培级电流密度下连续工作长达 200 小时而不会出现明显的活性衰减。这项工作提供了一种合成高稳定性 1T′-TMDs 电催化剂的通用方法,并特别关注其相与催化稳定性之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tailoring Copper Single-Atoms-Stabilized Metastable Transition-Metal-Dichalcogenides for Sustainable Hydrogen Production
Unconventional 1T′ phase transition metal dichalcogenides (TMDs) show great potential for hydrogen evolution reaction (HER). However, they are susceptible to transitioning into the stable 2H phase, which reduces their catalytic activity and stability. Herein, we present a scalable approach for designing thermally stable 1T′-TMDs hollow structures (HSs) by etching Cu1.94S templates from pre-synthesized Cu1.94S@TMDs heterostructures, including 1T′-MoS2, MoSe2, WS2, and WSe2 HSs. Furthermore, taking 1T′-MoS2 HSs as an example, the etched Cu ions can be firmly adsorbed on their surface in the form of single atoms (SAs) through Cu-S bonds, thereby elevating the phase transition temperature from 149 ºC to 373 ºC. Due to the advantages conferred by the 1T′ phase, hollow structure, and synergistic effect between Cu SAs and 1T′-MoS2 supports, the fabricated 1T′-MoS2 HSs demonstrate superior HER performance. Notably, their high-phase stability enables continuous operation of designed 1T′-MoS2 HSs for up to 200 hours at an ampere-level current density without significant activity decay. This work provides a universal method for synthesizing highly stable 1T′-TMDs electrocatalysts, with a particular focus on the relationship between their phase and catalytic stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Confinement effects and manipulation strategies of nanocomposite membranes towards molecular separation. Enhanced Coplanarity and Giant Birefringence in Hydroxypyridinium Nitrate via Hydrogen Bonding between Planar Donors and Planar Acceptors. Location-Specific Microenvironment Modulation Around Single-Atom Metal Sites in Metal-Organic Frameworks for Boosting Catalysis. Biosynthetic Origin of the Methoxy Group in Quinine and Related Alkaloids Bioinspired synthesis of cucurbalsaminones B and C.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1