C10 碳氢化合物/空气膨胀火焰的湍流火焰传播:基于马克斯坦数的可能统一相关性

IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Combustion and Flame Pub Date : 2024-09-14 DOI:10.1016/j.combustflame.2024.113724
{"title":"C10 碳氢化合物/空气膨胀火焰的湍流火焰传播:基于马克斯坦数的可能统一相关性","authors":"","doi":"10.1016/j.combustflame.2024.113724","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we experimentally analyzed the influence of turbulence and thermal-diffusional effect on the morphology and turbulent flame speed of premixed expanding flames. The turbulent flames of the n-decane/air and decalin/air mixtures were measured using a fan-stirred constant volume combustion bomb generating near-isotropic turbulence at elevated pressures (1, 2, and 5 bar), temperature (443 K), and a wide range of equivalence ratios (0.8–1.6). The results found that the wrinkling degree of the flame front was greater for <span><math><mrow><mi>M</mi><mi>a</mi></mrow></math></span>&lt;0 compared to <span><math><mrow><mi>M</mi><mi>a</mi></mrow></math></span>&gt;0. However, the distribution patterns of the curvature radius of the flame contours exhibited similarities across different equivalence ratios. Furthermore, an increase in turbulence intensity would aggravate the randomness of flame contour distribution. The turbulent expanding flames of n-decane/air and decalin/air mixtures were self-similar under different turbulence intensities and pressures, and this self-similar propagation followed a correlation between the normalized turbulent flame speed and the turbulent flame Reynolds number (<span><math><mrow><mi>R</mi><msub><mi>e</mi><mrow><mi>T</mi><mo>,</mo><mi>f</mi></mrow></msub></mrow></math></span>) to the one-half power. The similarity in normalized turbulent flame speeds was extended from normal alkanes (C4-C8) and isomeric alkanes (C8, C16) to longer straight-chain alkane (n-decane) and cycloalkane (decalin). As the increase of equivalence ratio, their normalized turbulent flame speeds increased nonlinearly due to the thermal-diffusional effect. Additionally, it was found that the classical, effective, and experimental Lewis numbers were confirmed as unsuitable parameters for characterizing the role of thermal-diffusional effect on the turbulent flame speed for hydrocarbon fuels with large molecular weight. Finally, two possible unified correlations were proposed based on the Markstein number, <span><math><mrow><mrow><mo>(</mo><mrow><mi>d</mi><mo>〈</mo><mi>r</mi><mo>〉</mo><mo>/</mo><mi>d</mi><mi>t</mi></mrow><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><mrow><mi>σ</mi><msub><mi>S</mi><mi>L</mi></msub></mrow><mo>)</mo></mrow><mo>=</mo><mn>0.178</mn><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mn>0.231</mn><mi>M</mi><mi>a</mi></mrow></msup><mi>R</mi><msubsup><mi>e</mi><mrow><mi>T</mi><mo>,</mo><mi>f</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msubsup></mrow></math></span> and <span><math><mrow><mrow><mo>(</mo><mrow><mi>d</mi><mo>〈</mo><mi>r</mi><mo>〉</mo><mo>/</mo><mi>d</mi><mi>t</mi></mrow><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><mrow><mi>σ</mi><msub><mi>S</mi><mi>L</mi></msub></mrow><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mrow><mn>0.170</mn><mo>−</mo><mn>0.0447</mn><mi>M</mi><mi>a</mi><mo>+</mo><mn>0.0067</mn><mi>M</mi><msup><mrow><mi>a</mi></mrow><mn>2</mn></msup></mrow><mo>)</mo></mrow><mi>R</mi><msubsup><mi>e</mi><mrow><mi>T</mi><mo>,</mo><mi>f</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msubsup></mrow></math></span>, which could predict the turbulent flame speeds of hydrocarbon fuels with large molecular weight such as n-alkanes, iso-alkanes, and decalin.</p></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turbulent flame propagation of C10 hydrocarbons/air expanding flames: Possible unified correlation based on the Markstein number\",\"authors\":\"\",\"doi\":\"10.1016/j.combustflame.2024.113724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we experimentally analyzed the influence of turbulence and thermal-diffusional effect on the morphology and turbulent flame speed of premixed expanding flames. The turbulent flames of the n-decane/air and decalin/air mixtures were measured using a fan-stirred constant volume combustion bomb generating near-isotropic turbulence at elevated pressures (1, 2, and 5 bar), temperature (443 K), and a wide range of equivalence ratios (0.8–1.6). The results found that the wrinkling degree of the flame front was greater for <span><math><mrow><mi>M</mi><mi>a</mi></mrow></math></span>&lt;0 compared to <span><math><mrow><mi>M</mi><mi>a</mi></mrow></math></span>&gt;0. However, the distribution patterns of the curvature radius of the flame contours exhibited similarities across different equivalence ratios. Furthermore, an increase in turbulence intensity would aggravate the randomness of flame contour distribution. The turbulent expanding flames of n-decane/air and decalin/air mixtures were self-similar under different turbulence intensities and pressures, and this self-similar propagation followed a correlation between the normalized turbulent flame speed and the turbulent flame Reynolds number (<span><math><mrow><mi>R</mi><msub><mi>e</mi><mrow><mi>T</mi><mo>,</mo><mi>f</mi></mrow></msub></mrow></math></span>) to the one-half power. The similarity in normalized turbulent flame speeds was extended from normal alkanes (C4-C8) and isomeric alkanes (C8, C16) to longer straight-chain alkane (n-decane) and cycloalkane (decalin). As the increase of equivalence ratio, their normalized turbulent flame speeds increased nonlinearly due to the thermal-diffusional effect. Additionally, it was found that the classical, effective, and experimental Lewis numbers were confirmed as unsuitable parameters for characterizing the role of thermal-diffusional effect on the turbulent flame speed for hydrocarbon fuels with large molecular weight. Finally, two possible unified correlations were proposed based on the Markstein number, <span><math><mrow><mrow><mo>(</mo><mrow><mi>d</mi><mo>〈</mo><mi>r</mi><mo>〉</mo><mo>/</mo><mi>d</mi><mi>t</mi></mrow><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><mrow><mi>σ</mi><msub><mi>S</mi><mi>L</mi></msub></mrow><mo>)</mo></mrow><mo>=</mo><mn>0.178</mn><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mn>0.231</mn><mi>M</mi><mi>a</mi></mrow></msup><mi>R</mi><msubsup><mi>e</mi><mrow><mi>T</mi><mo>,</mo><mi>f</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msubsup></mrow></math></span> and <span><math><mrow><mrow><mo>(</mo><mrow><mi>d</mi><mo>〈</mo><mi>r</mi><mo>〉</mo><mo>/</mo><mi>d</mi><mi>t</mi></mrow><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><mrow><mi>σ</mi><msub><mi>S</mi><mi>L</mi></msub></mrow><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mrow><mn>0.170</mn><mo>−</mo><mn>0.0447</mn><mi>M</mi><mi>a</mi><mo>+</mo><mn>0.0067</mn><mi>M</mi><msup><mrow><mi>a</mi></mrow><mn>2</mn></msup></mrow><mo>)</mo></mrow><mi>R</mi><msubsup><mi>e</mi><mrow><mi>T</mi><mo>,</mo><mi>f</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msubsup></mrow></math></span>, which could predict the turbulent flame speeds of hydrocarbon fuels with large molecular weight such as n-alkanes, iso-alkanes, and decalin.</p></div>\",\"PeriodicalId\":280,\"journal\":{\"name\":\"Combustion and Flame\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion and Flame\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010218024004334\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218024004334","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们通过实验分析了湍流和热扩散效应对预混合膨胀火焰形态和湍流火焰速度的影响。在高压(1、2 和 5 巴)、高温(443 K)和较宽的当量比(0.8-1.6)范围内,使用产生近各向同性湍流的扇形搅拌恒容燃烧弹测量了正癸烷/空气和癸烷/空气混合物的湍流火焰。结果发现,Ma<0 与 Ma>0 相比,火焰前沿的皱缩程度更大。然而,火焰轮廓曲率半径的分布模式在不同等效比之间表现出相似性。此外,湍流强度的增加会加剧火焰轮廓分布的随机性。在不同的湍流强度和压力下,正癸烷/空气和癸烷/空气混合物的湍流膨胀火焰具有自相似性,这种自相似性的传播遵循归一化湍流火焰速度与湍流火焰雷诺数(ReT,f)二分之一幂之间的相关性。归一化湍流火焰速度的相似性从普通烷烃(C4-C8)和异构烷烃(C8、C16)扩展到更长的直链烷烃(正癸烷)和环烷烃(癸烷)。随着当量比的增加,由于热扩散效应,它们的归一化湍流火焰速度呈非线性增加。此外,研究还发现,经典的、有效的和实验的路易斯数被证实不适合用来描述热扩散效应对大分子量烃类燃料湍流火焰速度的影响。最后,基于马克斯坦数提出了两种可能的统一相关性:(d〈r〉/dt)/(σSL)=0.178e-0.231MaReT,f1/2 和 (d〈r〉/dt)/(σSL)=(0.170-0.231MaReT,f1/2)。0447Ma+0.0067Ma2)ReT,f1/2,可以预测正构烷烃、异构烷烃和癸醛等大分子量烃类燃料的湍流火焰速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Turbulent flame propagation of C10 hydrocarbons/air expanding flames: Possible unified correlation based on the Markstein number

In this study, we experimentally analyzed the influence of turbulence and thermal-diffusional effect on the morphology and turbulent flame speed of premixed expanding flames. The turbulent flames of the n-decane/air and decalin/air mixtures were measured using a fan-stirred constant volume combustion bomb generating near-isotropic turbulence at elevated pressures (1, 2, and 5 bar), temperature (443 K), and a wide range of equivalence ratios (0.8–1.6). The results found that the wrinkling degree of the flame front was greater for Ma<0 compared to Ma>0. However, the distribution patterns of the curvature radius of the flame contours exhibited similarities across different equivalence ratios. Furthermore, an increase in turbulence intensity would aggravate the randomness of flame contour distribution. The turbulent expanding flames of n-decane/air and decalin/air mixtures were self-similar under different turbulence intensities and pressures, and this self-similar propagation followed a correlation between the normalized turbulent flame speed and the turbulent flame Reynolds number (ReT,f) to the one-half power. The similarity in normalized turbulent flame speeds was extended from normal alkanes (C4-C8) and isomeric alkanes (C8, C16) to longer straight-chain alkane (n-decane) and cycloalkane (decalin). As the increase of equivalence ratio, their normalized turbulent flame speeds increased nonlinearly due to the thermal-diffusional effect. Additionally, it was found that the classical, effective, and experimental Lewis numbers were confirmed as unsuitable parameters for characterizing the role of thermal-diffusional effect on the turbulent flame speed for hydrocarbon fuels with large molecular weight. Finally, two possible unified correlations were proposed based on the Markstein number, (dr/dt)/(σSL)=0.178e0.231MaReT,f1/2 and (dr/dt)/(σSL)=(0.1700.0447Ma+0.0067Ma2)ReT,f1/2, which could predict the turbulent flame speeds of hydrocarbon fuels with large molecular weight such as n-alkanes, iso-alkanes, and decalin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combustion and Flame
Combustion and Flame 工程技术-工程:化工
CiteScore
9.50
自引率
20.50%
发文量
631
审稿时长
3.8 months
期刊介绍: The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on: Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including: Conventional, alternative and surrogate fuels; Pollutants; Particulate and aerosol formation and abatement; Heterogeneous processes. Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including: Premixed and non-premixed flames; Ignition and extinction phenomena; Flame propagation; Flame structure; Instabilities and swirl; Flame spread; Multi-phase reactants. Advances in diagnostic and computational methods in combustion, including: Measurement and simulation of scalar and vector properties; Novel techniques; State-of-the art applications. Fundamental investigations of combustion technologies and systems, including: Internal combustion engines; Gas turbines; Small- and large-scale stationary combustion and power generation; Catalytic combustion; Combustion synthesis; Combustion under extreme conditions; New concepts.
期刊最新文献
Automatization of theoretical kinetic data generation for tabulated TS models building - Part 1: Application to 1,3-H-shift reactions Turbulent spray combustion modeling in reduced tabulation parameter space by similarity mapping Numerical investigation of lean methane flame response to NRP discharges actuation Oxidation of butane-2,3-dione at high pressure: Implications for ketene chemistry Ignition and combustion characteristics of boron particles under reduced pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1