{"title":"通过选择性激光烧结技术三维打印高刚度和高强度玻璃纤维增强 PEEK 复合材料","authors":"","doi":"10.1016/j.compositesa.2024.108470","DOIUrl":null,"url":null,"abstract":"<div><p>Glass fiber reinforced poly-ether-ether-ketone (PEEK) composites are emerging as structural materials of multifunctional devices in space applications, due to their outstanding mechanical properties, electrical insulating properties, and resistance to irradiation. Here, a new approach for preparing glass fiber/PEEK powders tailored for selective laser sintering (SLS) process is proposed. The surface of glass fiber is modified with the sulfonated PEEK following the designed procedure. The flowability of glass fiber/PEEK powders is also improved by adding the nano-scale SiO<sub>2</sub> flow agent. The glass fiber reinforced PEEK composites are successfully 3D printed using the glass fiber/PEEK powders. Further, the enhancement of interfacial bonding between PEEK and glass fiber is analyzed through quasi-static tension tests and scanning electron microscopy (SEM) for the SLSed glass fiber reinforced PEEK composites. The average ultimate tensile strength reaches approximately 100 MPa using these optimal process parameters, while the average elastic modulus is around 7 GPa. Finally, the upper limit of fiber weight fraction is evaluated with the X-ray computed tomography (XCT) and the high-fidelity discrete element method (DEM) simulation.</p></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D printing of high-stiffness and high-strength glass fiber reinforced PEEK composites by selective laser sintering\",\"authors\":\"\",\"doi\":\"10.1016/j.compositesa.2024.108470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Glass fiber reinforced poly-ether-ether-ketone (PEEK) composites are emerging as structural materials of multifunctional devices in space applications, due to their outstanding mechanical properties, electrical insulating properties, and resistance to irradiation. Here, a new approach for preparing glass fiber/PEEK powders tailored for selective laser sintering (SLS) process is proposed. The surface of glass fiber is modified with the sulfonated PEEK following the designed procedure. The flowability of glass fiber/PEEK powders is also improved by adding the nano-scale SiO<sub>2</sub> flow agent. The glass fiber reinforced PEEK composites are successfully 3D printed using the glass fiber/PEEK powders. Further, the enhancement of interfacial bonding between PEEK and glass fiber is analyzed through quasi-static tension tests and scanning electron microscopy (SEM) for the SLSed glass fiber reinforced PEEK composites. The average ultimate tensile strength reaches approximately 100 MPa using these optimal process parameters, while the average elastic modulus is around 7 GPa. Finally, the upper limit of fiber weight fraction is evaluated with the X-ray computed tomography (XCT) and the high-fidelity discrete element method (DEM) simulation.</p></div>\",\"PeriodicalId\":282,\"journal\":{\"name\":\"Composites Part A: Applied Science and Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part A: Applied Science and Manufacturing\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359835X24004676\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X24004676","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
3D printing of high-stiffness and high-strength glass fiber reinforced PEEK composites by selective laser sintering
Glass fiber reinforced poly-ether-ether-ketone (PEEK) composites are emerging as structural materials of multifunctional devices in space applications, due to their outstanding mechanical properties, electrical insulating properties, and resistance to irradiation. Here, a new approach for preparing glass fiber/PEEK powders tailored for selective laser sintering (SLS) process is proposed. The surface of glass fiber is modified with the sulfonated PEEK following the designed procedure. The flowability of glass fiber/PEEK powders is also improved by adding the nano-scale SiO2 flow agent. The glass fiber reinforced PEEK composites are successfully 3D printed using the glass fiber/PEEK powders. Further, the enhancement of interfacial bonding between PEEK and glass fiber is analyzed through quasi-static tension tests and scanning electron microscopy (SEM) for the SLSed glass fiber reinforced PEEK composites. The average ultimate tensile strength reaches approximately 100 MPa using these optimal process parameters, while the average elastic modulus is around 7 GPa. Finally, the upper limit of fiber weight fraction is evaluated with the X-ray computed tomography (XCT) and the high-fidelity discrete element method (DEM) simulation.
期刊介绍:
Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.