揭示半相干 Al(111)/MgAlB4(0002)界面的粘附强度、断裂机制和稳定性:第一原理研究

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-09-14 DOI:10.1016/j.commatsci.2024.113370
{"title":"揭示半相干 Al(111)/MgAlB4(0002)界面的粘附强度、断裂机制和稳定性:第一原理研究","authors":"","doi":"10.1016/j.commatsci.2024.113370","DOIUrl":null,"url":null,"abstract":"<div><p>In the present study, we systematically explored the kinetic and thermodynamic properties of the ceramic phase MgAlB<sub>4</sub> based on the first-principles calculations, and the adhesion work (<em>W</em><sub>ad</sub>), interfacial energy (<em>γ</em>), atomic structure, and interfacial fracture mechanism of semi-coherent Al(111)/MgAlB<sub>4</sub>(0002) interfaces were also explored. The results show that the interfacial constructions of the MT (bridge) sites are unstable and the atoms at the interface move to the interior after relaxation. In addition, the obtained adhesion work and interfacial energy indicate that the stability of the HCP (hollow) sites interfacial configurations are higher than the MT and OT (on-top) sites. The interfacial structure of B-terminated Al(111)/MgAlB<sub>4</sub>(0002) HCP site is the most stable because it has the largest adhesion work and the smallest interfacial energy. The interfacial electronic structures indicate the B-Al covalent bonds are formed at the Al(111)/ MgAlB<sub>4</sub>(0002) interface, while mechanical failure in the B-terminated HCP site interfacial configuration occurs in the Al phase. Ultimately, the results show that the ceramic phase MgAlB<sub>4</sub> particle reinforcement can effectively enhance the strength and plasticity of the Al-based composites.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revealing the adhesion strength, fracture mechanism and stability of semi-coherent Al(111)/MgAlB4(0002) interfaces: A first-principles investigation\",\"authors\":\"\",\"doi\":\"10.1016/j.commatsci.2024.113370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present study, we systematically explored the kinetic and thermodynamic properties of the ceramic phase MgAlB<sub>4</sub> based on the first-principles calculations, and the adhesion work (<em>W</em><sub>ad</sub>), interfacial energy (<em>γ</em>), atomic structure, and interfacial fracture mechanism of semi-coherent Al(111)/MgAlB<sub>4</sub>(0002) interfaces were also explored. The results show that the interfacial constructions of the MT (bridge) sites are unstable and the atoms at the interface move to the interior after relaxation. In addition, the obtained adhesion work and interfacial energy indicate that the stability of the HCP (hollow) sites interfacial configurations are higher than the MT and OT (on-top) sites. The interfacial structure of B-terminated Al(111)/MgAlB<sub>4</sub>(0002) HCP site is the most stable because it has the largest adhesion work and the smallest interfacial energy. The interfacial electronic structures indicate the B-Al covalent bonds are formed at the Al(111)/ MgAlB<sub>4</sub>(0002) interface, while mechanical failure in the B-terminated HCP site interfacial configuration occurs in the Al phase. Ultimately, the results show that the ceramic phase MgAlB<sub>4</sub> particle reinforcement can effectively enhance the strength and plasticity of the Al-based composites.</p></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025624005913\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624005913","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究在第一性原理计算的基础上,系统地探讨了陶瓷相 MgAlB4 的动力学和热力学性质,并对半相干 Al(111)/MgAlB4(0002) 界面的粘附功(Wad)、界面能(γ)、原子结构和界面断裂机制进行了探讨。结果表明,MT(桥)位点的界面结构不稳定,松弛后界面上的原子会向内部移动。此外,获得的粘附功和界面能表明,HCP(空心)位点界面构型的稳定性高于 MT 和 OT(顶部)位点。B端Al(111)/MgAlB4(0002) HCP位点的界面结构是最稳定的,因为它具有最大的附着功和最小的界面能。界面电子结构表明,B-Al 共价键形成于 Al(111)/MgAlB4(0002) 界面,而 B 端 HCP 位点界面构型的机械破坏发生在铝相中。最终,研究结果表明,陶瓷相 MgAlB4 粒子增强可有效提高铝基复合材料的强度和塑性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Revealing the adhesion strength, fracture mechanism and stability of semi-coherent Al(111)/MgAlB4(0002) interfaces: A first-principles investigation

In the present study, we systematically explored the kinetic and thermodynamic properties of the ceramic phase MgAlB4 based on the first-principles calculations, and the adhesion work (Wad), interfacial energy (γ), atomic structure, and interfacial fracture mechanism of semi-coherent Al(111)/MgAlB4(0002) interfaces were also explored. The results show that the interfacial constructions of the MT (bridge) sites are unstable and the atoms at the interface move to the interior after relaxation. In addition, the obtained adhesion work and interfacial energy indicate that the stability of the HCP (hollow) sites interfacial configurations are higher than the MT and OT (on-top) sites. The interfacial structure of B-terminated Al(111)/MgAlB4(0002) HCP site is the most stable because it has the largest adhesion work and the smallest interfacial energy. The interfacial electronic structures indicate the B-Al covalent bonds are formed at the Al(111)/ MgAlB4(0002) interface, while mechanical failure in the B-terminated HCP site interfacial configuration occurs in the Al phase. Ultimately, the results show that the ceramic phase MgAlB4 particle reinforcement can effectively enhance the strength and plasticity of the Al-based composites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
Effects of radiation and temperature on displacement cascades in 4H-SiC: A molecular dynamic study A Finite Difference informed Random Walk solver for simulating radiation defect evolution in polycrystalline structures with strongly inhomogeneous diffusivity Revealing the adhesion strength, fracture mechanism and stability of semi-coherent Al(111)/MgAlB4(0002) interfaces: A first-principles investigation Interfacial thermal resistance in stanene/ hexagonal boron nitride van der Waals heterostructures: A molecular dynamics study Molecular dynamics modelling of the stress–strain response of β-sheet nanocrystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1