铬污染影响真菌群落,增加长期污染土壤中网络的复杂性和稳定性

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Research Pub Date : 2024-09-12 DOI:10.1016/j.envres.2024.119946
{"title":"铬污染影响真菌群落,增加长期污染土壤中网络的复杂性和稳定性","authors":"","doi":"10.1016/j.envres.2024.119946","DOIUrl":null,"url":null,"abstract":"<div><p>Chromium (Cr) contamination can adversely affect soil ecology, yet our knowledge of how fungi respond to Cr contamination at heavily contaminated field sites remains relatively limited. This study employed high-throughput sequencing technology to analyze fungal community characteristics in soils with varying Cr concentrations. The results showed that Cr contamination significantly influenced soil fungi's relative abundance and structure. Mantel test analysis identified hexavalent chromium (Cr(VI)) as the primary factor affecting the structure of the soil fungal community. In addition, FUNGuild functional prediction analysis exhibited that Cr contamination reduced the relative abundance of Pathotroph and Symbiotroph trophic types. High concentrations of Cr may lead to a drop in the relative abundance of Animal Pathogens. Molecular ecological network analysis showed that Cr contamination increased interactions among soil fungi, thereby enhancing the stability and complexity of the network. Within these networks, specific keystone taxa, such as the genus <em>Phanerochaete</em>, exhibited properties capable of removing or reducing the toxicity of heavy metals. Our studies suggest that Cr contamination can alter indigenous fungal communities in soil systems, potentially impacting soil ecosystem function.</p></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chromium contamination affects the fungal community and increases the complexity and stability of the network in long-term contaminated soils\",\"authors\":\"\",\"doi\":\"10.1016/j.envres.2024.119946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chromium (Cr) contamination can adversely affect soil ecology, yet our knowledge of how fungi respond to Cr contamination at heavily contaminated field sites remains relatively limited. This study employed high-throughput sequencing technology to analyze fungal community characteristics in soils with varying Cr concentrations. The results showed that Cr contamination significantly influenced soil fungi's relative abundance and structure. Mantel test analysis identified hexavalent chromium (Cr(VI)) as the primary factor affecting the structure of the soil fungal community. In addition, FUNGuild functional prediction analysis exhibited that Cr contamination reduced the relative abundance of Pathotroph and Symbiotroph trophic types. High concentrations of Cr may lead to a drop in the relative abundance of Animal Pathogens. Molecular ecological network analysis showed that Cr contamination increased interactions among soil fungi, thereby enhancing the stability and complexity of the network. Within these networks, specific keystone taxa, such as the genus <em>Phanerochaete</em>, exhibited properties capable of removing or reducing the toxicity of heavy metals. Our studies suggest that Cr contamination can alter indigenous fungal communities in soil systems, potentially impacting soil ecosystem function.</p></div>\",\"PeriodicalId\":312,\"journal\":{\"name\":\"Environmental Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013935124018516\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935124018516","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

铬(Cr)污染会对土壤生态产生不利影响,但我们对真菌如何应对严重污染现场的铬污染的了解仍然相对有限。本研究采用高通量测序技术分析了不同铬浓度土壤中的真菌群落特征。结果表明,铬污染显著影响了土壤真菌的相对丰度和结构。曼特尔检验分析确定六价铬(Cr(VI))是影响土壤真菌群落结构的主要因素。此外,FUNGuild 功能预测分析表明,铬污染降低了病原营养型和共生营养型营养群落的相对丰度。高浓度的铬可能会导致动物病原体的相对丰度下降。分子生态网络分析显示,铬污染增加了土壤真菌之间的相互作用,从而提高了网络的稳定性和复杂性。在这些网络中,特定的基石类群(如 Phanerochaete 属)表现出能够去除或降低重金属毒性的特性。我们的研究表明,铬污染会改变土壤系统中的本地真菌群落,从而对土壤生态系统的功能产生潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chromium contamination affects the fungal community and increases the complexity and stability of the network in long-term contaminated soils

Chromium (Cr) contamination can adversely affect soil ecology, yet our knowledge of how fungi respond to Cr contamination at heavily contaminated field sites remains relatively limited. This study employed high-throughput sequencing technology to analyze fungal community characteristics in soils with varying Cr concentrations. The results showed that Cr contamination significantly influenced soil fungi's relative abundance and structure. Mantel test analysis identified hexavalent chromium (Cr(VI)) as the primary factor affecting the structure of the soil fungal community. In addition, FUNGuild functional prediction analysis exhibited that Cr contamination reduced the relative abundance of Pathotroph and Symbiotroph trophic types. High concentrations of Cr may lead to a drop in the relative abundance of Animal Pathogens. Molecular ecological network analysis showed that Cr contamination increased interactions among soil fungi, thereby enhancing the stability and complexity of the network. Within these networks, specific keystone taxa, such as the genus Phanerochaete, exhibited properties capable of removing or reducing the toxicity of heavy metals. Our studies suggest that Cr contamination can alter indigenous fungal communities in soil systems, potentially impacting soil ecosystem function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
期刊最新文献
Research on the mechanisms of 2D road runoff pollution migration and the influence of pipeline overflow onto roads Corrigendum to Non-essential and essential trace element mixtures and kidney function in early pregnancy – A cross-sectional analysis in project viva [Environ. Res. 216P4 (2023) 114846] Bacterial community and dissolved organic matter networks in urban river: The role of human influence Degradation of phenol by metal-free electro-fenton using a carbonyl-modified activated carbon cathode: Promoting simultaneous H2O2 generation and activation Corrigendum to: “Association between ambient temperature and thyroid-stimulating hormone and free thyroxine levels in Korean euthyroid adults” [Environ. Res. Volume 262, Part 2, 1 December 2024, Article Number 119918]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1