时速 400 公里列车风荷载下高速铁路桥梁声屏障锚固端混凝土破坏分析

IF 3.9 2区 工程技术 Q1 ENGINEERING, CIVIL Structures Pub Date : 2024-09-14 DOI:10.1016/j.istruc.2024.107284
{"title":"时速 400 公里列车风荷载下高速铁路桥梁声屏障锚固端混凝土破坏分析","authors":"","doi":"10.1016/j.istruc.2024.107284","DOIUrl":null,"url":null,"abstract":"<div><p>The sound barrier installed on high-speed railway bridges withstands repeated train-induced wind load, which may lead to concrete damage at its anchorage end. This paper focuses on the assessment of concrete static damage at the sound barrier anchorage end under train-induced wind loads. The nonlinear finite element model of the sound barrier anchorage system is established to analyze the stress distribution, strain distribution and static damage of concrete structure at the anchorage end under 400 km/h train-induced wind loads in respect of different bolt preloads. The simulated results illustrate that both mortar and concrete near bolt holes suffer a certain degree of tensile and compressive damage. The maximum tensile and compressive damage factor values for mortar and concrete are 0.930, 0.643 and 0.892, 0.434 respectively. In addition, the effects of train-induced wind load on the internal force of the sound barrier anchorage take nearly no account, with a maximum of only 0.68 %. The results indicate that bolt preload is the most significant factor for concrete static damage, while the train-induced wind load appears negligible. An appropriate bolt preload can avoid the concrete static damage of the sound barrier anchorage end, and guarantee the structural stability of the sound barrier.</p></div>","PeriodicalId":48642,"journal":{"name":"Structures","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of concrete damage at anchorage end of the high-speed railway bridge sound barrier under the 400 km/h train-induced wind loads\",\"authors\":\"\",\"doi\":\"10.1016/j.istruc.2024.107284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The sound barrier installed on high-speed railway bridges withstands repeated train-induced wind load, which may lead to concrete damage at its anchorage end. This paper focuses on the assessment of concrete static damage at the sound barrier anchorage end under train-induced wind loads. The nonlinear finite element model of the sound barrier anchorage system is established to analyze the stress distribution, strain distribution and static damage of concrete structure at the anchorage end under 400 km/h train-induced wind loads in respect of different bolt preloads. The simulated results illustrate that both mortar and concrete near bolt holes suffer a certain degree of tensile and compressive damage. The maximum tensile and compressive damage factor values for mortar and concrete are 0.930, 0.643 and 0.892, 0.434 respectively. In addition, the effects of train-induced wind load on the internal force of the sound barrier anchorage take nearly no account, with a maximum of only 0.68 %. The results indicate that bolt preload is the most significant factor for concrete static damage, while the train-induced wind load appears negligible. An appropriate bolt preload can avoid the concrete static damage of the sound barrier anchorage end, and guarantee the structural stability of the sound barrier.</p></div>\",\"PeriodicalId\":48642,\"journal\":{\"name\":\"Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S235201242401436X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235201242401436X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

高速铁路桥梁上安装的声屏障反复承受列车引起的风荷载,这可能导致声屏障锚固端混凝土损坏。本文主要研究列车风荷载作用下声屏障锚固端混凝土静力破坏的评估。本文建立了声屏障锚固系统的非线性有限元模型,分析了在列车诱导的 400 km/h 风荷载作用下,不同螺栓预紧力对锚固端混凝土结构的应力分布、应变分布和静力破坏情况。模拟结果表明,螺栓孔附近的砂浆和混凝土都受到一定程度的拉伸和压缩破坏。砂浆和混凝土的最大拉伸和压缩破坏因子值分别为 0.930、0.643 和 0.892、0.434。此外,火车引起的风荷载对声屏障锚固件内力的影响几乎没有考虑,最大值仅为 0.68%。结果表明,螺栓预紧力是造成混凝土静力破坏的最主要因素,而火车引起的风荷载似乎可以忽略不计。适当的螺栓预紧力可以避免声屏障锚碇端部的混凝土静力破坏,保证声屏障的结构稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of concrete damage at anchorage end of the high-speed railway bridge sound barrier under the 400 km/h train-induced wind loads

The sound barrier installed on high-speed railway bridges withstands repeated train-induced wind load, which may lead to concrete damage at its anchorage end. This paper focuses on the assessment of concrete static damage at the sound barrier anchorage end under train-induced wind loads. The nonlinear finite element model of the sound barrier anchorage system is established to analyze the stress distribution, strain distribution and static damage of concrete structure at the anchorage end under 400 km/h train-induced wind loads in respect of different bolt preloads. The simulated results illustrate that both mortar and concrete near bolt holes suffer a certain degree of tensile and compressive damage. The maximum tensile and compressive damage factor values for mortar and concrete are 0.930, 0.643 and 0.892, 0.434 respectively. In addition, the effects of train-induced wind load on the internal force of the sound barrier anchorage take nearly no account, with a maximum of only 0.68 %. The results indicate that bolt preload is the most significant factor for concrete static damage, while the train-induced wind load appears negligible. An appropriate bolt preload can avoid the concrete static damage of the sound barrier anchorage end, and guarantee the structural stability of the sound barrier.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structures
Structures Engineering-Architecture
CiteScore
5.70
自引率
17.10%
发文量
1187
期刊介绍: Structures aims to publish internationally-leading research across the full breadth of structural engineering. Papers for Structures are particularly welcome in which high-quality research will benefit from wide readership of academics and practitioners such that not only high citation rates but also tangible industrial-related pathways to impact are achieved.
期刊最新文献
Experimental study on acoustic emission damage in precast reinforced concrete interior joints containing disc springs Experimental and numerical studies on the mechanical behavior of metallic connecting pieces in point-supported glass facades A new cross section hypothesis-based approach for quantifying deployment characteristics of deployable inflatable structures Numerical study on seismic performance of a prefabricated subway station considering the influence of construction process Investigation on shear performance of sliding-type rapid segmental joints for shield tunnels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1