{"title":"能量分布、熔化温度、动力学和空间几何形状对玻璃熔化效率的影响","authors":"Marcela Jebavá , Petra Cincibusová , Vladislava Tonarová , Lubomír Němec","doi":"10.1016/j.jnoncrysol.2024.123227","DOIUrl":null,"url":null,"abstract":"<div><p>The role of melting phenomena such as batch conversion, sand dissolution, bubble removal, and character of melt flow in glass melting process was investigated by using mathematical modeling. The objective of simulations was to achieve highest melting performance of a model “T-space”. Depending on the energetic factors, which express the longitudinal energy distribution and the proportion between Joule and combustion energy, uniform or spiral flow in the melting space were adjusted, characterized by high melting performance and reduced specific energy consumption. The effects of other factors, such as temperature, bubble growth rate, thickness of batch layer, and space geometry were investigated and their complex role in melting process discussed. Semiempirical formula expressing the relation between melting phenomena was derived. A schema illustrating the phenomena roles in melting process was designed.</p></div>","PeriodicalId":16461,"journal":{"name":"Journal of Non-crystalline Solids","volume":"646 ","pages":"Article 123227"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of energy distribution, melting temperature, kinetics and space geometry on glass melting efficiency\",\"authors\":\"Marcela Jebavá , Petra Cincibusová , Vladislava Tonarová , Lubomír Němec\",\"doi\":\"10.1016/j.jnoncrysol.2024.123227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The role of melting phenomena such as batch conversion, sand dissolution, bubble removal, and character of melt flow in glass melting process was investigated by using mathematical modeling. The objective of simulations was to achieve highest melting performance of a model “T-space”. Depending on the energetic factors, which express the longitudinal energy distribution and the proportion between Joule and combustion energy, uniform or spiral flow in the melting space were adjusted, characterized by high melting performance and reduced specific energy consumption. The effects of other factors, such as temperature, bubble growth rate, thickness of batch layer, and space geometry were investigated and their complex role in melting process discussed. Semiempirical formula expressing the relation between melting phenomena was derived. A schema illustrating the phenomena roles in melting process was designed.</p></div>\",\"PeriodicalId\":16461,\"journal\":{\"name\":\"Journal of Non-crystalline Solids\",\"volume\":\"646 \",\"pages\":\"Article 123227\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-crystalline Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022309324004046\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-crystalline Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022309324004046","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Influence of energy distribution, melting temperature, kinetics and space geometry on glass melting efficiency
The role of melting phenomena such as batch conversion, sand dissolution, bubble removal, and character of melt flow in glass melting process was investigated by using mathematical modeling. The objective of simulations was to achieve highest melting performance of a model “T-space”. Depending on the energetic factors, which express the longitudinal energy distribution and the proportion between Joule and combustion energy, uniform or spiral flow in the melting space were adjusted, characterized by high melting performance and reduced specific energy consumption. The effects of other factors, such as temperature, bubble growth rate, thickness of batch layer, and space geometry were investigated and their complex role in melting process discussed. Semiempirical formula expressing the relation between melting phenomena was derived. A schema illustrating the phenomena roles in melting process was designed.
期刊介绍:
The Journal of Non-Crystalline Solids publishes review articles, research papers, and Letters to the Editor on amorphous and glassy materials, including inorganic, organic, polymeric, hybrid and metallic systems. Papers on partially glassy materials, such as glass-ceramics and glass-matrix composites, and papers involving the liquid state are also included in so far as the properties of the liquid are relevant for the formation of the solid.
In all cases the papers must demonstrate both novelty and importance to the field, by way of significant advances in understanding or application of non-crystalline solids; in the case of Letters, a compelling case must also be made for expedited handling.