Qianli Zhang , Shuo Bi , Yingchun Xie , Guijie Liu
{"title":"FMAW-YOLOv5s:利用光学图像检测甲烷羽流的深度学习方法","authors":"Qianli Zhang , Shuo Bi , Yingchun Xie , Guijie Liu","doi":"10.1016/j.apor.2024.104217","DOIUrl":null,"url":null,"abstract":"<div><p>Natural gas hydrates stored in the subsurface seabed of continental margins are one of the most important carbon reservoirs on Earth. Research on natural gas hydrates is of great significance to global warming and ecological protection. Methane plumes caused by crustal dynamics are usually considered as a sign of existence of natural gas hydrates. Detection of methane plumes thus becomes the first step of cold seep research. This paper conducts comprehensive research on detection of methane plumes based on deep learning methods and optical images. First, we proposed a method of creating high quality and balanced datasets for methane plumes detection tasks using open-source videos. We then proposed a FMAW-YOLOv5s method for methane plumes detection. The FMAW-YOLOv5s method improves the traditional YOLOv5s in design of backbone network, neck network and loss function. The FMAW-YOLOv5s method can realize accurate and fast detection of methane plumes with a precision of 96.9% and FPS of 141.7. The lightweight feature of FMAW-YOLOv5s also enables the deployment in edge computing devices such as AUVs and ROVs. This research can not only promote the study of cold seep activities, but also provide meaningful insights for detection of other underwater events such as gas pipelines leakage.</p></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":"153 ","pages":"Article 104217"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FMAW-YOLOv5s: A deep learning method for detection of methane plumes using optical images\",\"authors\":\"Qianli Zhang , Shuo Bi , Yingchun Xie , Guijie Liu\",\"doi\":\"10.1016/j.apor.2024.104217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Natural gas hydrates stored in the subsurface seabed of continental margins are one of the most important carbon reservoirs on Earth. Research on natural gas hydrates is of great significance to global warming and ecological protection. Methane plumes caused by crustal dynamics are usually considered as a sign of existence of natural gas hydrates. Detection of methane plumes thus becomes the first step of cold seep research. This paper conducts comprehensive research on detection of methane plumes based on deep learning methods and optical images. First, we proposed a method of creating high quality and balanced datasets for methane plumes detection tasks using open-source videos. We then proposed a FMAW-YOLOv5s method for methane plumes detection. The FMAW-YOLOv5s method improves the traditional YOLOv5s in design of backbone network, neck network and loss function. The FMAW-YOLOv5s method can realize accurate and fast detection of methane plumes with a precision of 96.9% and FPS of 141.7. The lightweight feature of FMAW-YOLOv5s also enables the deployment in edge computing devices such as AUVs and ROVs. This research can not only promote the study of cold seep activities, but also provide meaningful insights for detection of other underwater events such as gas pipelines leakage.</p></div>\",\"PeriodicalId\":8261,\"journal\":{\"name\":\"Applied Ocean Research\",\"volume\":\"153 \",\"pages\":\"Article 104217\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Ocean Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141118724003389\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141118724003389","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
FMAW-YOLOv5s: A deep learning method for detection of methane plumes using optical images
Natural gas hydrates stored in the subsurface seabed of continental margins are one of the most important carbon reservoirs on Earth. Research on natural gas hydrates is of great significance to global warming and ecological protection. Methane plumes caused by crustal dynamics are usually considered as a sign of existence of natural gas hydrates. Detection of methane plumes thus becomes the first step of cold seep research. This paper conducts comprehensive research on detection of methane plumes based on deep learning methods and optical images. First, we proposed a method of creating high quality and balanced datasets for methane plumes detection tasks using open-source videos. We then proposed a FMAW-YOLOv5s method for methane plumes detection. The FMAW-YOLOv5s method improves the traditional YOLOv5s in design of backbone network, neck network and loss function. The FMAW-YOLOv5s method can realize accurate and fast detection of methane plumes with a precision of 96.9% and FPS of 141.7. The lightweight feature of FMAW-YOLOv5s also enables the deployment in edge computing devices such as AUVs and ROVs. This research can not only promote the study of cold seep activities, but also provide meaningful insights for detection of other underwater events such as gas pipelines leakage.
期刊介绍:
The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.