基于 Q-learning 元启发式算法的高能效多目标分布式装配包络流水线调度

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Soft Computing Pub Date : 2024-09-12 DOI:10.1016/j.asoc.2024.112247
{"title":"基于 Q-learning 元启发式算法的高能效多目标分布式装配包络流水线调度","authors":"","doi":"10.1016/j.asoc.2024.112247","DOIUrl":null,"url":null,"abstract":"<div><p>This study addresses energy-efficient multi-objective distributed assembly permutation flowshop scheduling problems with minimisation of maximum completion time, mean of earliness and tardiness, and total carbon emission simultaneously. A mathematical model is introduced to describe the concerned problems. Five meta-heuristics are employed and improved, including the artificial bee colony, genetic algorithms, particle swarm optimization, iterated greedy algorithms, and Jaya algorithms. To improve the quality of solutions, five critical path-based neighborhood structures are designed. Q-learning, a value-based reinforcement learning algorithm that learns an optimal strategy by repeatedly interacting with the environment, is embedded into meta-heuristics. The Q-learning guides algorithms intelligently select appropriate neighborhood structures in the iterative process. Then, two machine speed adjustment strategies are developed to further optimize the obtained solutions. Finally, extensive experimental results show that the Jaya algorithm with Q-learning has the best performance for solving the considered problems.</p></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-efficient multi-objective distributed assembly permutation flowshop scheduling by Q-learning based meta-heuristics\",\"authors\":\"\",\"doi\":\"10.1016/j.asoc.2024.112247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study addresses energy-efficient multi-objective distributed assembly permutation flowshop scheduling problems with minimisation of maximum completion time, mean of earliness and tardiness, and total carbon emission simultaneously. A mathematical model is introduced to describe the concerned problems. Five meta-heuristics are employed and improved, including the artificial bee colony, genetic algorithms, particle swarm optimization, iterated greedy algorithms, and Jaya algorithms. To improve the quality of solutions, five critical path-based neighborhood structures are designed. Q-learning, a value-based reinforcement learning algorithm that learns an optimal strategy by repeatedly interacting with the environment, is embedded into meta-heuristics. The Q-learning guides algorithms intelligently select appropriate neighborhood structures in the iterative process. Then, two machine speed adjustment strategies are developed to further optimize the obtained solutions. Finally, extensive experimental results show that the Jaya algorithm with Q-learning has the best performance for solving the considered problems.</p></div>\",\"PeriodicalId\":50737,\"journal\":{\"name\":\"Applied Soft Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568494624010214\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494624010214","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了同时最小化最大完成时间、提前和延迟平均值以及总碳排放量的高能效多目标分布式装配排列流动车间调度问题。研究引入了一个数学模型来描述相关问题。采用并改进了五种元启发式算法,包括人工蜂群算法、遗传算法、粒子群优化算法、迭代贪婪算法和 Jaya 算法。为了提高解决方案的质量,设计了五种基于关键路径的邻域结构。Q-learning 是一种基于价值的强化学习算法,它通过与环境的反复交互来学习最优策略,被嵌入到元启发式算法中。Q-learning 引导算法在迭代过程中智能地选择适当的邻域结构。然后,开发了两种机器速度调整策略,以进一步优化获得的解决方案。最后,大量实验结果表明,采用 Q-learning 的 Jaya 算法在解决所考虑的问题时性能最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy-efficient multi-objective distributed assembly permutation flowshop scheduling by Q-learning based meta-heuristics

This study addresses energy-efficient multi-objective distributed assembly permutation flowshop scheduling problems with minimisation of maximum completion time, mean of earliness and tardiness, and total carbon emission simultaneously. A mathematical model is introduced to describe the concerned problems. Five meta-heuristics are employed and improved, including the artificial bee colony, genetic algorithms, particle swarm optimization, iterated greedy algorithms, and Jaya algorithms. To improve the quality of solutions, five critical path-based neighborhood structures are designed. Q-learning, a value-based reinforcement learning algorithm that learns an optimal strategy by repeatedly interacting with the environment, is embedded into meta-heuristics. The Q-learning guides algorithms intelligently select appropriate neighborhood structures in the iterative process. Then, two machine speed adjustment strategies are developed to further optimize the obtained solutions. Finally, extensive experimental results show that the Jaya algorithm with Q-learning has the best performance for solving the considered problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
期刊最新文献
An adaptive genetic algorithm with neighborhood search for integrated O2O takeaway order assignment and delivery optimization by e-bikes with varied compartments LesionMix data enhancement and entropy minimization for semi-supervised lesion segmentation of lung cancer A preordonance-based decision tree method and its parallel implementation in the framework of Map-Reduce A personality-guided preference aggregator for ephemeral group recommendation A decomposition-based multi-objective evolutionary algorithm using infinitesimal method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1