Jonas Karolis Degutis, Denis Chaimow, Daniel Haenelt, Moataz Assem, John Duncan, John-Dylan Haynes, Nikolaus Weiskopf, Romy Lorenz
{"title":"工作记忆过程中前额叶皮层的动态特定层处理","authors":"Jonas Karolis Degutis, Denis Chaimow, Daniel Haenelt, Moataz Assem, John Duncan, John-Dylan Haynes, Nikolaus Weiskopf, Romy Lorenz","doi":"10.1038/s42003-024-06780-8","DOIUrl":null,"url":null,"abstract":"The dorsolateral prefrontal cortex (dlPFC) is reliably engaged in working memory (WM) and comprises different cytoarchitectonic layers, yet their functional role in human WM is unclear. Here, participants completed a delayed-match-to-sample task while undergoing functional magnetic resonance imaging (fMRI) at ultra-high resolution. We examine layer-specific activity to manipulations in WM load and motor response. Superficial layers exhibit a preferential response to WM load during the delay and retrieval periods of a WM task, indicating a lamina-specific activation of the frontoparietal network. Multivariate patterns encoding WM load in the superficial layer dynamically change across the three periods of the task. Last, superficial and deep layers are non-differentially involved in the motor response, challenging earlier findings of a preferential deep layer activation. Taken together, our results provide new insights into the functional laminar circuitry of the dlPFC during WM and support a dynamic account of dlPFC coding. Layer-specific imaging of the human dorsolateral prefrontal cortex reveals distinct laminar responses to working memory load and dynamic coding of working memory trial phases.","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42003-024-06780-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Dynamic layer-specific processing in the prefrontal cortex during working memory\",\"authors\":\"Jonas Karolis Degutis, Denis Chaimow, Daniel Haenelt, Moataz Assem, John Duncan, John-Dylan Haynes, Nikolaus Weiskopf, Romy Lorenz\",\"doi\":\"10.1038/s42003-024-06780-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dorsolateral prefrontal cortex (dlPFC) is reliably engaged in working memory (WM) and comprises different cytoarchitectonic layers, yet their functional role in human WM is unclear. Here, participants completed a delayed-match-to-sample task while undergoing functional magnetic resonance imaging (fMRI) at ultra-high resolution. We examine layer-specific activity to manipulations in WM load and motor response. Superficial layers exhibit a preferential response to WM load during the delay and retrieval periods of a WM task, indicating a lamina-specific activation of the frontoparietal network. Multivariate patterns encoding WM load in the superficial layer dynamically change across the three periods of the task. Last, superficial and deep layers are non-differentially involved in the motor response, challenging earlier findings of a preferential deep layer activation. Taken together, our results provide new insights into the functional laminar circuitry of the dlPFC during WM and support a dynamic account of dlPFC coding. Layer-specific imaging of the human dorsolateral prefrontal cortex reveals distinct laminar responses to working memory load and dynamic coding of working memory trial phases.\",\"PeriodicalId\":10552,\"journal\":{\"name\":\"Communications Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42003-024-06780-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s42003-024-06780-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s42003-024-06780-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Dynamic layer-specific processing in the prefrontal cortex during working memory
The dorsolateral prefrontal cortex (dlPFC) is reliably engaged in working memory (WM) and comprises different cytoarchitectonic layers, yet their functional role in human WM is unclear. Here, participants completed a delayed-match-to-sample task while undergoing functional magnetic resonance imaging (fMRI) at ultra-high resolution. We examine layer-specific activity to manipulations in WM load and motor response. Superficial layers exhibit a preferential response to WM load during the delay and retrieval periods of a WM task, indicating a lamina-specific activation of the frontoparietal network. Multivariate patterns encoding WM load in the superficial layer dynamically change across the three periods of the task. Last, superficial and deep layers are non-differentially involved in the motor response, challenging earlier findings of a preferential deep layer activation. Taken together, our results provide new insights into the functional laminar circuitry of the dlPFC during WM and support a dynamic account of dlPFC coding. Layer-specific imaging of the human dorsolateral prefrontal cortex reveals distinct laminar responses to working memory load and dynamic coding of working memory trial phases.
期刊介绍:
Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.