用于成分储层模拟的碳氢化合物-CO2-H2O 系统相态识别旁路改进方法

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Geosciences Pub Date : 2024-09-10 DOI:10.1016/j.cageo.2024.105725
{"title":"用于成分储层模拟的碳氢化合物-CO2-H2O 系统相态识别旁路改进方法","authors":"","doi":"10.1016/j.cageo.2024.105725","DOIUrl":null,"url":null,"abstract":"<div><p>CO<sub>2</sub> injection is a highly effective technique to enhance oil recovery, achieved through continuous or alternative injection. However, the intricate interactions between different phases within porous media present significant challenges when predicting the performance of CO<sub>2</sub> injection. To address this, it is crucial to employ compositional simulation, which accounts for the multiphase multicomponent transport. Nonetheless, conventional multiphase flash calculations can be computationally inefficient for large-scale reservoir simulations. Therefore, it is necessary to accelerate the Equation-of-State (EoS)-based compositional simulation, given the widespread use of CO<sub>2</sub> enhanced oil recovery (CO<sub>2</sub>-EOR) in recent years. The phase-state identification bypass method has proven to be superior to other methods in terms of efficiency. However, this approach struggles with regions near phase boundaries, resulting in reduced computational efficiency in those areas.</p><p>In this study, an enhanced phase-state identification bypass approach is developed to address this limitation. The first step involves discretising the pressure-temperature space using rectangular grids. Additionally, the tie-simplexes, which represent regions defined by the maximum number of phases formed by the fluid under consideration, are discretized in the phase-fraction space at the pressure and temperature of each discretization node. Subsequently, the discretization grid associated with the given point (the overall composition, pressure, and temperature) is located, and the phase states of the grid nodes are determined using the conventional multiphase flash method. If all nodes exhibit the same phase state, that phase state is assigned to the given point. However, if multiple phase states are obtained, a novel process is proposed to determine the phase state of the given point. To validate this improvement to the phase-state identification bypass method, phase diagram calculations and simulation cases are conducted, and the results demonstrate the robustness of the proposed method and its superior computational efficiency compared to the previous method.</p></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved phase-state identification bypass approach of the hydrocarbons-CO2-H2O system for compositional reservoir simulation\",\"authors\":\"\",\"doi\":\"10.1016/j.cageo.2024.105725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>CO<sub>2</sub> injection is a highly effective technique to enhance oil recovery, achieved through continuous or alternative injection. However, the intricate interactions between different phases within porous media present significant challenges when predicting the performance of CO<sub>2</sub> injection. To address this, it is crucial to employ compositional simulation, which accounts for the multiphase multicomponent transport. Nonetheless, conventional multiphase flash calculations can be computationally inefficient for large-scale reservoir simulations. Therefore, it is necessary to accelerate the Equation-of-State (EoS)-based compositional simulation, given the widespread use of CO<sub>2</sub> enhanced oil recovery (CO<sub>2</sub>-EOR) in recent years. The phase-state identification bypass method has proven to be superior to other methods in terms of efficiency. However, this approach struggles with regions near phase boundaries, resulting in reduced computational efficiency in those areas.</p><p>In this study, an enhanced phase-state identification bypass approach is developed to address this limitation. The first step involves discretising the pressure-temperature space using rectangular grids. Additionally, the tie-simplexes, which represent regions defined by the maximum number of phases formed by the fluid under consideration, are discretized in the phase-fraction space at the pressure and temperature of each discretization node. Subsequently, the discretization grid associated with the given point (the overall composition, pressure, and temperature) is located, and the phase states of the grid nodes are determined using the conventional multiphase flash method. If all nodes exhibit the same phase state, that phase state is assigned to the given point. However, if multiple phase states are obtained, a novel process is proposed to determine the phase state of the given point. To validate this improvement to the phase-state identification bypass method, phase diagram calculations and simulation cases are conducted, and the results demonstrate the robustness of the proposed method and its superior computational efficiency compared to the previous method.</p></div>\",\"PeriodicalId\":55221,\"journal\":{\"name\":\"Computers & Geosciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098300424002085\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424002085","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

二氧化碳注入是提高石油采收率的一种高效技术,可通过连续注入或替代注入实现。然而,多孔介质中不同相之间错综复杂的相互作用给二氧化碳注入的性能预测带来了巨大挑战。要解决这个问题,关键是要采用成分模拟,以考虑多相多组分传输。然而,传统的多相闪蒸计算在大规模储层模拟中计算效率较低。因此,鉴于近年来二氧化碳提高采油(CO2-EOR)的广泛应用,有必要加快基于状态方程(EoS)的成分模拟。事实证明,相态识别旁路法在效率方面优于其他方法。然而,这种方法在相边界附近区域的计算很困难,导致这些区域的计算效率降低。第一步是使用矩形网格离散压力-温度空间。此外,在每个离散节点的压力和温度处的相分数空间中离散出领带复数(代表由所考虑的流体形成的最大相数所定义的区域)。随后,定位与给定点(总体成分、压力和温度)相关的离散网格,并使用传统的多相闪络法确定网格节点的相态。如果所有节点都表现出相同的相态,则将该相态分配给给定点。但是,如果获得了多个相位状态,则需要采用一种新方法来确定给定点的相位状态。为了验证相态识别旁路方法的这一改进,我们进行了相图计算和仿真案例,结果证明了所提方法的稳健性,以及与之前方法相比更高的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved phase-state identification bypass approach of the hydrocarbons-CO2-H2O system for compositional reservoir simulation

CO2 injection is a highly effective technique to enhance oil recovery, achieved through continuous or alternative injection. However, the intricate interactions between different phases within porous media present significant challenges when predicting the performance of CO2 injection. To address this, it is crucial to employ compositional simulation, which accounts for the multiphase multicomponent transport. Nonetheless, conventional multiphase flash calculations can be computationally inefficient for large-scale reservoir simulations. Therefore, it is necessary to accelerate the Equation-of-State (EoS)-based compositional simulation, given the widespread use of CO2 enhanced oil recovery (CO2-EOR) in recent years. The phase-state identification bypass method has proven to be superior to other methods in terms of efficiency. However, this approach struggles with regions near phase boundaries, resulting in reduced computational efficiency in those areas.

In this study, an enhanced phase-state identification bypass approach is developed to address this limitation. The first step involves discretising the pressure-temperature space using rectangular grids. Additionally, the tie-simplexes, which represent regions defined by the maximum number of phases formed by the fluid under consideration, are discretized in the phase-fraction space at the pressure and temperature of each discretization node. Subsequently, the discretization grid associated with the given point (the overall composition, pressure, and temperature) is located, and the phase states of the grid nodes are determined using the conventional multiphase flash method. If all nodes exhibit the same phase state, that phase state is assigned to the given point. However, if multiple phase states are obtained, a novel process is proposed to determine the phase state of the given point. To validate this improvement to the phase-state identification bypass method, phase diagram calculations and simulation cases are conducted, and the results demonstrate the robustness of the proposed method and its superior computational efficiency compared to the previous method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
期刊最新文献
A reverse tracing of the water flow path algorithm for slope length extraction based on triangulated irregular network Rock-type classification: A (critical) machine-learning perspective Improving the training performance of generative adversarial networks with limited data: Application to the generation of geological models A hybrid inversion algorithm to obtain the resistivity of the uninvaded zone based on the array induction log Application of polynomial type elastic outer boundary conditions in fractal composite reservoir seepage model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1