Laura del-Mazo-Barbara , Judith Gómez-Cuyàs , Leandro Martínez-Orozco , Orlando Santana Pérez , Elisabeth Bou-Petit , Maria-Pau Ginebra
{"title":"三维打印聚己内酯/仿生羟基磷灰石支架的体外降解:灭菌方法的影响","authors":"Laura del-Mazo-Barbara , Judith Gómez-Cuyàs , Leandro Martínez-Orozco , Orlando Santana Pérez , Elisabeth Bou-Petit , Maria-Pau Ginebra","doi":"10.1016/j.polymertesting.2024.108566","DOIUrl":null,"url":null,"abstract":"<div><p>In the transition from the laboratory to the clinic, the sterilization of medical devices becomes a fundamental and mandatory step to ensure patient safety. This work evaluates the impact of three different sterilization methods - autoclave, ethylene oxide and gamma irradiation - on the physicochemical properties and degradation kinetics of 3D-printed polycaprolactone\\calcium deficient hydroxyapatite (PCL\\CDHA) scaffolds for bone regeneration. The <em>in vitro</em> degradation test was performed in phosphate buffer saline solution at 47 °C for 18 weeks by recording the evolution of pH, scaffold morphology, swelling degree, mass loss as well as polymer content, molecular weight and crystallinity. The results showed that under thermally accelerated degradation, the scaffolds underwent hydrolytic bulk degradation without altering the pH of the soaking medium nor compromising the morphology and integrity of the constructs. Although the structural integrity of the scaffolds was maintained, autoclaving severely deteriorated the properties of the polymer, resulting in a faster degradation pattern, confirming that it is not an appropriate sterilization method for PCL\\CDHA scaffolds. While ethylene oxide had no significant effect on degradation, gamma irradiation slightly accelerated hydrolysis by chain scission. However, due to the porous nature of the scaffolds, the use of ethylene oxide is inadvisable due to the risk of gas trapping in the pores. Therefore, gamma irradiation, a non-toxic, effective, predictable and reproducible sterilization method, is considered the most appropriate.</p></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"139 ","pages":"Article 108566"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0142941824002435/pdfft?md5=8b8e1720a928ad71f0072c19525e60af&pid=1-s2.0-S0142941824002435-main.pdf","citationCount":"0","resultStr":"{\"title\":\"In vitro degradation of 3D-printed polycaprolactone\\\\biomimetic hydroxyapatite scaffolds: Impact of the sterilization method\",\"authors\":\"Laura del-Mazo-Barbara , Judith Gómez-Cuyàs , Leandro Martínez-Orozco , Orlando Santana Pérez , Elisabeth Bou-Petit , Maria-Pau Ginebra\",\"doi\":\"10.1016/j.polymertesting.2024.108566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the transition from the laboratory to the clinic, the sterilization of medical devices becomes a fundamental and mandatory step to ensure patient safety. This work evaluates the impact of three different sterilization methods - autoclave, ethylene oxide and gamma irradiation - on the physicochemical properties and degradation kinetics of 3D-printed polycaprolactone\\\\calcium deficient hydroxyapatite (PCL\\\\CDHA) scaffolds for bone regeneration. The <em>in vitro</em> degradation test was performed in phosphate buffer saline solution at 47 °C for 18 weeks by recording the evolution of pH, scaffold morphology, swelling degree, mass loss as well as polymer content, molecular weight and crystallinity. The results showed that under thermally accelerated degradation, the scaffolds underwent hydrolytic bulk degradation without altering the pH of the soaking medium nor compromising the morphology and integrity of the constructs. Although the structural integrity of the scaffolds was maintained, autoclaving severely deteriorated the properties of the polymer, resulting in a faster degradation pattern, confirming that it is not an appropriate sterilization method for PCL\\\\CDHA scaffolds. While ethylene oxide had no significant effect on degradation, gamma irradiation slightly accelerated hydrolysis by chain scission. However, due to the porous nature of the scaffolds, the use of ethylene oxide is inadvisable due to the risk of gas trapping in the pores. Therefore, gamma irradiation, a non-toxic, effective, predictable and reproducible sterilization method, is considered the most appropriate.</p></div>\",\"PeriodicalId\":20628,\"journal\":{\"name\":\"Polymer Testing\",\"volume\":\"139 \",\"pages\":\"Article 108566\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0142941824002435/pdfft?md5=8b8e1720a928ad71f0072c19525e60af&pid=1-s2.0-S0142941824002435-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Testing\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142941824002435\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941824002435","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
In vitro degradation of 3D-printed polycaprolactone\biomimetic hydroxyapatite scaffolds: Impact of the sterilization method
In the transition from the laboratory to the clinic, the sterilization of medical devices becomes a fundamental and mandatory step to ensure patient safety. This work evaluates the impact of three different sterilization methods - autoclave, ethylene oxide and gamma irradiation - on the physicochemical properties and degradation kinetics of 3D-printed polycaprolactone\calcium deficient hydroxyapatite (PCL\CDHA) scaffolds for bone regeneration. The in vitro degradation test was performed in phosphate buffer saline solution at 47 °C for 18 weeks by recording the evolution of pH, scaffold morphology, swelling degree, mass loss as well as polymer content, molecular weight and crystallinity. The results showed that under thermally accelerated degradation, the scaffolds underwent hydrolytic bulk degradation without altering the pH of the soaking medium nor compromising the morphology and integrity of the constructs. Although the structural integrity of the scaffolds was maintained, autoclaving severely deteriorated the properties of the polymer, resulting in a faster degradation pattern, confirming that it is not an appropriate sterilization method for PCL\CDHA scaffolds. While ethylene oxide had no significant effect on degradation, gamma irradiation slightly accelerated hydrolysis by chain scission. However, due to the porous nature of the scaffolds, the use of ethylene oxide is inadvisable due to the risk of gas trapping in the pores. Therefore, gamma irradiation, a non-toxic, effective, predictable and reproducible sterilization method, is considered the most appropriate.
期刊介绍:
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization.
The scope includes but is not limited to the following main topics:
Novel testing methods and Chemical analysis
• mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology
Physical properties and behaviour of novel polymer systems
• nanoscale properties, morphology, transport properties
Degradation and recycling of polymeric materials when combined with novel testing or characterization methods
• degradation, biodegradation, ageing and fire retardancy
Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.