Hanfang Zheng , Xuezhen Wu , Yujing Jiang , Gang Wang , Bo Li
{"title":"洞察螺栓连接岩石接头的速度剪切特性:全灌浆螺栓和吸能螺栓的比较研究","authors":"Hanfang Zheng , Xuezhen Wu , Yujing Jiang , Gang Wang , Bo Li","doi":"10.1016/j.ijrmms.2024.105910","DOIUrl":null,"url":null,"abstract":"<div><p>In geotechnical engineering, activities such as landslides, rockfalls, blasting, and excavation often subject jointed rock masses to dynamic shear loads, impacting project stability. With continuous innovation of anchoring support technology, the appearance of energy-absorbing bolts has provided more options for rock support. This study selected fully-grouted bolts and energy-absorbing bolts, considering the roughness of natural rock joints. Indoor shear tests were conducted on bolted specimens at varying shear velocities. A comprehensive analysis was conducted on the failure morphology of joint surfaces and the fracture characteristics of bolts. Subsequently, the shear performance of both bolt types was quantitatively assessed through absorbed shear energy. At the interface between fully-grouted bolts and joint surfaces, stress concentration phenomena were observed. In contrast, energy-absorbing bolts exhibited significant necking phenomena. Under external forces, the bolt body detached from the grout, enabling it to accommodate large deformations of the rock mass and absorb energy. The results indicate that energy-absorbing bolts demonstrate better adaptability and energy absorption capacity under high-velocity shearing, while fully-grouted bolts exhibit higher peak shear stresses. Based on the experimental findings, for projects requiring consideration of dynamic shear loads and energy absorption capabilities, energy-absorbing bolts may be more suitable, providing additional safety assurance. Conversely, fully-grouted bolts may be more appropriate for applications with higher requirements for shear resistance, such as structural support under general static loads.</p></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"183 ","pages":"Article 105910"},"PeriodicalIF":7.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into velocity-dependent shear characteristics of bolted rock joints: A comparative study of fully-grouted and energy-absorbing bolts\",\"authors\":\"Hanfang Zheng , Xuezhen Wu , Yujing Jiang , Gang Wang , Bo Li\",\"doi\":\"10.1016/j.ijrmms.2024.105910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In geotechnical engineering, activities such as landslides, rockfalls, blasting, and excavation often subject jointed rock masses to dynamic shear loads, impacting project stability. With continuous innovation of anchoring support technology, the appearance of energy-absorbing bolts has provided more options for rock support. This study selected fully-grouted bolts and energy-absorbing bolts, considering the roughness of natural rock joints. Indoor shear tests were conducted on bolted specimens at varying shear velocities. A comprehensive analysis was conducted on the failure morphology of joint surfaces and the fracture characteristics of bolts. Subsequently, the shear performance of both bolt types was quantitatively assessed through absorbed shear energy. At the interface between fully-grouted bolts and joint surfaces, stress concentration phenomena were observed. In contrast, energy-absorbing bolts exhibited significant necking phenomena. Under external forces, the bolt body detached from the grout, enabling it to accommodate large deformations of the rock mass and absorb energy. The results indicate that energy-absorbing bolts demonstrate better adaptability and energy absorption capacity under high-velocity shearing, while fully-grouted bolts exhibit higher peak shear stresses. Based on the experimental findings, for projects requiring consideration of dynamic shear loads and energy absorption capabilities, energy-absorbing bolts may be more suitable, providing additional safety assurance. Conversely, fully-grouted bolts may be more appropriate for applications with higher requirements for shear resistance, such as structural support under general static loads.</p></div>\",\"PeriodicalId\":54941,\"journal\":{\"name\":\"International Journal of Rock Mechanics and Mining Sciences\",\"volume\":\"183 \",\"pages\":\"Article 105910\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Rock Mechanics and Mining Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1365160924002752\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1365160924002752","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Insights into velocity-dependent shear characteristics of bolted rock joints: A comparative study of fully-grouted and energy-absorbing bolts
In geotechnical engineering, activities such as landslides, rockfalls, blasting, and excavation often subject jointed rock masses to dynamic shear loads, impacting project stability. With continuous innovation of anchoring support technology, the appearance of energy-absorbing bolts has provided more options for rock support. This study selected fully-grouted bolts and energy-absorbing bolts, considering the roughness of natural rock joints. Indoor shear tests were conducted on bolted specimens at varying shear velocities. A comprehensive analysis was conducted on the failure morphology of joint surfaces and the fracture characteristics of bolts. Subsequently, the shear performance of both bolt types was quantitatively assessed through absorbed shear energy. At the interface between fully-grouted bolts and joint surfaces, stress concentration phenomena were observed. In contrast, energy-absorbing bolts exhibited significant necking phenomena. Under external forces, the bolt body detached from the grout, enabling it to accommodate large deformations of the rock mass and absorb energy. The results indicate that energy-absorbing bolts demonstrate better adaptability and energy absorption capacity under high-velocity shearing, while fully-grouted bolts exhibit higher peak shear stresses. Based on the experimental findings, for projects requiring consideration of dynamic shear loads and energy absorption capabilities, energy-absorbing bolts may be more suitable, providing additional safety assurance. Conversely, fully-grouted bolts may be more appropriate for applications with higher requirements for shear resistance, such as structural support under general static loads.
期刊介绍:
The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.